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Abstract. This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small
number of labeled training documents with a large pool of unlabeled documents. This is important because in many
text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents
are readily available.

We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of
Expectation-Maximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the
available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier
using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when
the data conform to the generative assumptions of the model. However these assumptions are often violated in
practice, and poor performance can result. We present two extensions to the algorithm that improve classification
accuracy under these conditions: (1) a weighting factor to modulate the contribution of the unlabeled data, and (2)
the use of multiple mixture components per class. Experimental results, obtained using text from three different
real-world tasks, show that the use of unlabeled data reduces classification error by up to 30%.

Keywords: text classification, Expectation-Maximization, integrating supervised and unsupervised learning,
combining labeled and unlabeled data, Bayesian learning

1. Introduction

Consider the problem of automatically classifying text documents. This problem is of
great practical importance given the massive volume of online text available through the
World Wide Web, Internet news feeds, electronic mail, corporate databases, medical patient
records and digital libraries. Existing statistical text learning algorithms can be trained to
approximately classify documents, given a sufficient set of labeled training examples. These
text classification algorithms have been used to automatically catalog news articles (Lewis
& Gale, 1994; Joachims, 1998) and web pages (Craven et al., 1998; Shavlik & Eliassi-Red,
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1998), automatically learn the reading interests of users (Pazzani, Muramatsu, & Billsus,
1996; Lang, 1995), and automatically sort electronic mail (Lewis & Knowles, 1997; Sahami
et al., 1998).

One key difficulty with these current algorithms, and the issue addressed by this paper, is
that they require a large, often prohibitive, number of labeled training examples to learn accu-
rately. Labeling must often be done by a person; this is a painfully time-consuming process.

Take, for example, the task of learning which UseNet newsgroup articles are of interest to
a particular person reading UseNet news. Systems that filter or pre-sort articles and present
only the ones the user finds interesting are highly desirable, and are of great commercial
interest today. Work by Lang (1995) found that after a person read and labeled about 1000
articles, a learned classifier achieved a precision of about 50% when making predictions for
only the top 10% of documents about which it was most confident. Most users of a practical
system, however, would not have the patience to label a thousand articles—especially to
obtain only this level of precision. One would obviously prefer algorithms that can provide
accurate classifications after hand-labeling only a few dozen articles, rather than thousands.

The need for large quantities of data to obtain high accuracy, and the difficulty of obtaining
labeled data, raises an important question: what other sources of information can reduce
the need for labeled data?

This paper addresses the problem of learning accurate text classifiers from limited num-
bers of labeled examples by usingunlabeleddocuments to augment the availablelabeled
documents. In many text domains, especially those involving online sources, collecting
unlabeled documents is easy and inexpensive. The filtering task above, where there are
thousands of unlabeled articles freely available on UseNet, is one such example. It is the
labeling, not the collecting of documents, that is expensive.

How is it that unlabeled data can increase classification accuracy? At first consideration,
one might be inclined to think that nothing is to be gained by access to unlabeled data.
However, they do provide information about the joint probability distribution over words.
Suppose, for example, that using only the labeled data we determine that documents con-
taining the word “homework” tend to belong to the positive class. If we use this fact to
estimate the classification of the many unlabeled documents, we might find that the word
“lecture” occurs frequently in the unlabeled examples that are now believed to belong to the
positive class. This co-occurrence of the words “homework” and “lecture” over the large
set of unlabeled training data can provide useful information to construct a more accurate
classifier that considers both “homework” and “lecture” as indicators of positive examples.
In this paper, we explain that such correlations are a helpful source of information for
increasing classification rates, specifically when labeled data are scarce.

This paper uses Expectation-Maximization (EM) to learn classifiers that take advantage
of both labeled and unlabeled data. EM is a class of iterative algorithms for maximum like-
lihood or maximum a posteriori estimation in problems with incomplete data (Dempster,
Laird, & Rubin, 1977). In our case, the unlabeled data are considered incomplete because
they come without class labels. The algorithm first trains a classifier with only the available
labeleddocuments, and uses the classifier to assign probabilistically-weighted class labels
to each unlabeled document by calculating the expectation of the missing class labels. It then
trains a new classifier using all the documents—both the originally labeled and the formerly
unlabeled—and iterates. In its maximum likelihood formulation, EM performs hill-climbing
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in data likelihood space, finding the classifier parameters that locally maximize the likeli-
hood of all the data—both the labeled and the unlabeled. We combine EM with naive Bayes,
a classifier based on a mixture of multinomials, that is commonly used in text classification.

We also propose two augmentations to the basic EM scheme. In order for basic EM to
improve classifier accuracy, several assumptions about how the data are generated must be
satisfied. The assumptions are that the data are generated by a mixture model, and that there is
a correspondence between mixture components and classes. When these assumptions are
not satisfied, EM may actually degrade rather than improve classifier accuracy. Since these
assumptions rarely hold in real-world data, we propose extensions to the basic EM/naive-
Bayes combination that allow unlabeled data to still improve classification accuracy, in spite
of violated assumptions. The first extension introduces a weighting factor that dynamically
adjusts the strength of the unlabeled data’s contribution to parameter estimation in EM.
The second reduces the bias of naive Bayes by modeling each class with multiple mixture
components, instead of a single component.

Over the course of several experimental comparisons, we show that (1) unlabeled data
can significantly increase performance, (2) the basic EM algorithm can suffer from a misfit
between the modeling assumptions and the unlabeled data, and (3) each extension mentioned
above often reduces the effect of this problem and improves classification.

The reduction in the number of labeled examples needed can be dramatic. For example, to
identify the source newsgroup for a UseNet article with 70% classification accuracy, a tradi-
tional learner requires 2000 labeled examples; alternatively our algorithm takes advantage
of 10000 unlabeled examples and requires only 600 labeled examples to achieve the same
accuracy. Thus, in this task, the technique reduces the need for labeled training examples
by more than a factor of three. With only 40 labeled documents (two per class), accuracy is
improved from 27% to 43% by adding unlabeled data. These findings illustrate the power
of unlabeled data in text classification problems, and also demonstrate the strength of the
algorithms proposed here.

The remainder of the paper is organized as follows. Section 2 describes, from a theoretical
point of view, the problem of learning from labeled and unlabeled data. Sections 3 and 4
present the formal framework for naive Bayes. In Section 5, we present the combination of
EM and naive Bayes, and our extensions to this algorithm. Section 6 describes a systematic
experimental comparison using three classification domains: newsgroup articles, web pages,
and newswire articles. The first two domains are multi-class classification problems where
each class is relatively frequent. The third domain is treated as binary classification, with
the “positive” class having a frequency between 1% and 30%, depending on the task.
Related work is discussed in Section 7. Finally, advantages, limitations, and future research
directions are discussed in Section 8.

2. Argument for the value of unlabeled data

How are unlabeled data useful when learning classification? Unlabeled dataalone are
generally insufficient to yield better-than-random classification because there is no infor-
mation about the class label (Castelli & Cover, 1995). However, unlabeled data do contain
information about the joint distribution over features other than the class label. Because of
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Figure 1. Classification by a mixture of Gaussians. If unlimited amounts of unlabeled data are available, the
mixture components can be fully recovered, and labeled data are used to assign labels to the individual components,
converging exponentially quickly to the Bayes-optimal classifier.

this they can sometimes be used—together with a sample of labeled data—to significantly
increase classification accuracy in certain problem settings.

To see this, consider a simple classification problem—one in which instances are gener-
ated using a Gaussian mixture model. Here, data are generated according to two Gaussian
distributions, one per class, whose parameters are unknown. Figure 1 illustrates the Bayes-
optimal decision boundary (x > d), which classifies instances into the two classes shown
by the shaded and unshaded areas. Note that it is possible to calculated from Bayes rule if
we know the Gaussian mixture distribution parameters (i.e., the mean and variance of each
Gaussian, and the mixing parameter between them).

Consider when an infinite amount of unlabeled data is available, along with a finite
number of labeled samples. It is well known that unlabeled data alone, when generated
from a mixture of two Gaussians, are sufficient to recover the original mixture components
(McLachlan & Krishnan, 1997, section 2.7). However, it is impossible to assign class labels
to each of the Gaussians without any labeled data. Thus, the remaining learning problem
is the problem of assigning class labels to the two Gaussians. For instance, in figure 1, the
means, variances, and mixture parameter can be learned with unlabeled data alone. Labeled
data must be used to determine which Gaussian belongs to which class. This problem
is known to converge exponentially quickly in the number of labeled samples (Castelli
& Cover, 1995). Informally, as long as there are enough labeled examples to determine
the class of each component, the parameter estimation can be done with unlabeled data
alone.

It is important to notice that this result depends on the critical assumption that the data
indeed have been generated using the same parametric model as used in classification,
something that almost certainly is untrue in real-world domains such as text classification.
This raises the important empirical question as to what extent unlabeled data can be useful
in practice in spite of the violated assumptions. In the following sections we address this by
describing in detail a parametric generative model for text classification and by presenting
empirical results using this model on real-world data.
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3. The probabilistic framework

This section presents a probabilistic framework for characterizing the nature of documents
and classifiers. The framework defines a probabilistic generative model for the data, and
embodies two assumptions about the generative process: (1) the data are produced by a
mixture model, and (2) there is a one-to-one correspondence between mixture components
and classes.1 The naive Bayes text classifier we will discuss later falls into this framework,
as does the example in Section 2.

In this setting, every document is generated according to a probability distribution defined
by a set of parameters, denotedθ . The probability distribution consists of a mixture of
componentscj ∈ C={c1, . . . , c|C|}. Each component is parameterized by a disjoint subset of
θ . A document,di , is created by first selecting a mixture component according to the mixture
weights (or class prior probabilities), P(cj | θ), then having this selected mixture component
generate a document according to its own parameters, with distribution P(di | cj ; θ).2 Thus,
we can characterize the likelihood of documentdi with a sum of total probability over all
mixture components:

P(di | θ) =
|C|∑
j=1

P(cj | θ)P(di | cj ; θ). (1)

Each document has a class label. We assume that there is a one-to-one correspondence
between mixture model components and classes, and thus (for the time being) usecj to
indicate thej th mixture component as well as, thej th class. The class label for a particular
documentdi is written yi . If documentdi was generated by mixture componentcj we say
yi = cj . The class label may or may not be known for a given document.

4. Text classification with naive Bayes

This section presents naive Bayes—a well-known probabilistic classifier—and describes
its application to text. Naive Bayes is the foundation upon which we will later build in order
to incorporate unlabeled data.

The learning task in this section is to estimate the parameters of a generative model using
labeled training data only. The algorithm uses the estimated parameters to classify new
documents by calculating which class was most likely to have generated the given document.

4.1. The generative model

Naive Bayes assumes a particular probabilistic generative model for text. The model is a
specialization of the mixture model presented in the previous section, and thus also makes
the two assumptions discussed there. Additionally, naive Bayes makes word independence
assumptions that allow the generative model to be characterized with a greatly reduced
number of parameters. The rest of this subsection describes the generative model more
formally, giving a precise specification of the model parameters, and deriving the probability
that a particular document is generated given its class label (Eq. (4)).
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First let us introduce some notation to describe text. A document,di , is considered to be
an ordered list of word events,〈wdi,1, wdi,2, . . .〉. We writewdi,k for the wordwt in position
k of documentdi , wherewt is a word in the vocabularyV = 〈w1, w2, . . . , w|V |〉.

When a document is to be generated by a particular mixture component,cj , a document
length,|di |, is chosen independently of the component. (Note that this assumes that doc-
ument length is independent of class.3) Then, the selected mixture component generates
a word sequence of the specified length. We furthermore assume it generates each word
independently of the length.

Thus, we can expand the second term from Eq. (1), and express the probability of a
document given a mixture component in terms of its constituent features: the document
length and the words in the document. Note that, in this general setting, the probability of
a word event must be conditioned on all the words that precede it.

P(di | cj ; θ)=P
(〈
wdi,1, . . . , wdi,|di |

〉 ∣∣ cj ; θ
)=P(|di |)

|di |∏
k=1

P
(
wdi,k

∣∣ cj ; θ;wdi,q ,q < k
)
(2)

Next we make the standard naive Bayes assumption: that the words of a document
are generated independently of context, that is, independently of the other words in the
same document given the class label. We further assume that the probability of a word is
independent of its position within the document; thus, for example, the probability of seeing
the word “homework” in the first position of a document is the same as seeing it in any
other position. We can express these assumptions as:

P
(
wdi,k

∣∣ cj ; θ;wdi,q ,q < k
) = P

(
wdi,k

∣∣ cj ; θ
)
. (3)

Combining these last two equations gives the naive Bayes expression for the probability
of a document given its class:

P(di | cj ; θ) = P(|di |)
|di |∏
k=1

P
(
wdi,k

∣∣cj ; θ
)
. (4)

Thus the parameters of an individual mixture component are a multinomial distribution
over words,i.e. the collection of word probabilities, each writtenθwt |cj , such thatθwt |cj =
P(wt | cj ; θ), wheret = {1, . . . , |V |} and

∑
t P(wt | cj ; θ) = 1. Since we assume that for

all classes, document length is identically distributed, it does not need to be parameterized
for classification. The only other parameters of the model are the mixture weights (class prior
probabilities), writtenθcj , which indicate the probabilities of selecting the different mixture
components. Thus the complete collection of model parameters,θ , is a set of multinomials
and prior probabilities over those multinomials:θ ={θwt |cj : wt ∈ V, cj ∈ C; θcj : cj ∈ C}.

4.2. Training a classifier

Learning a naive Bayes text classifier consists of estimating the parameters of the generative
model by using a set of labeled training data,D = {d1, . . . ,d|D|}. This subsection derives
a method for calculating these estimates from the training data.



TEXT CLASSIFICATION USING EM 109

The estimate ofθ is writtenθ̂ . Naive Bayes uses the maximum a posteriori estimate, thus
finding arg maxθ P(θ | D). This is the value ofθ that is most probable given the evidence
of the training data and a prior.

The parameter estimation formulae that result from this maximization are the familiar
ratios of empirical counts. The estimated probability of a word given a class,θ̂wt |cj , is simply
the number of times wordwt occurs in the training data for classcj , divided by the total
number of word occurrences in the training data for that class—where counts in both the
numerator and denominator are augmented with “pseudo-counts” (one for each word) that
come from the prior distribution overθ . The use of this type of prior is sometimes referred to
asLaplace smoothing. Smoothing is necessary to prevent zero probabilities for infrequently
occurring words.

The word probability estimateŝθwt |cj are:

θ̂wt |cj ≡ P(wt | cj ; θ̂ ) = 1+∑|D|i=1 N(wt , di )P(yi = cj | di )

|V | +∑|V |s=1

∑|D|
i=1 N(ws, di )P(yi = cj | di )

, (5)

whereN(wt , di ) is the count of the number of times wordwt occurs in documentdi and
where P(yi = cj | di ) ∈ {0, 1} as given by the class label.

The class prior probabilities,̂θcj , are estimated in the same manner, and also involve a
ratio of counts with smoothing:

θ̂cj ≡ P(cj | θ̂ ) = 1+∑|D|i=1 P(yi = cj | di )

|C| + |D| . (6)

The derivation of these “ratios of counts” formulae comes directly from maximum a
posteriori parameter estimation, and will be appealed to again later when deriving parameter
estimation formulae for EM and augmented EM. Finding theθ that maximizes P(θ | D)
is accomplished by first breaking this expression into two terms by Bayes’ rule: P(θ | D)
∝ P(D | θ)P(θ). The first term is calculated by the product of all the document likelihoods
(from Eq. (1)). The second term, the prior distribution over parameters, we represent by a
Dirichlet distribution: P(θ) ∝ ∏

cj∈C((θcj )
α−1∏

wt∈V (θwt |cj )
α−1), whereα is a parameter

that effects the strength of the prior, and is some constant greater than zero.4 In this paper, we
setα= 2, which (with maximum a posteriori estimation) is equivalent to Laplace smoothing.
The whole expression is maximized by solving the system of partial derivatives of log(P(θ |
D)), using Lagrange multipliers to enforce the constraint that the word probabilities in a
class must sum to one. This maximization yields the ratio of counts seen above.

4.3. Using a classifier

Given estimates of these parameters calculated from the training documents according to
Eqs. (5) and (6), it is possible to turn the generative model backwards and calculate the
probability that a particular mixture component generated a given document. We derive this
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by an application of Bayes’ rule, and then by substitutions using Eqs. (1) and (4):

P(yi = cj | di ; θ̂ ) = P(cj | θ̂ )P(di | cj ; θ̂ )
P(di | θ̂ )

= P(cj | θ̂ )
∏|di |

k=1 P
(
wdi,k

∣∣cj ; θ̂
)∑|C|

r=1 P(cr | θ̂ )
∏|di |

k=1 P
(
wdi,k

∣∣cr ; θ̂
) . (7)

If the task is to classify a test documentdi into a single class, then the class with the highest
posterior probability, arg maxj P(yi = cj | di ; θ̂ ), is selected.

4.4. Discussion

Note that all four assumptions about the generation of text documents (mixture model,
one-to-one correspondence between mixture components and classes, word independence,
and document length distribution) are violated in real-world text data. Documents are often
mixtures of multiple topics. Words within a document are not independent of each other—
grammar and topicality make this so.

Despite these violations, empirically the Naive Bayes classifier does a good job of clas-
sifying text documents (Lewis & Ringuette, 1994; Craven et al., 1998; Yang & Pederson,
1997; Joachims, 1997; McCallum et al., 1998). This observation is explained in part by the
fact that classification estimation is only a function of the sign (in binary classification) of the
function estimation (Domingos & Pazzani, 1997; Friedman, 1997). The word independence
assumption causes naive Bayes to give extreme (almost 0 or 1) class probability estimates.
However, these estimates can still be poor while classification accuracy remains high.

The above formulation of naive Bayes uses a generative model that accounts for the
number of times a word appears in a document. It is a multinomial (or in language modeling
terms, “unigram”) model, where the classifier is a mixture of multinomials (McCallum &
Nigam, 1998). This formulation has been used by numerous practitioners of naive Bayes
text classification (Lewis & Gale, 1994; Joachims, 1997; Li & Yamanishi, 1997; Mitchell,
1997; McCallum et al., 1998; Lewis, 1998). However, there is another formulation of naive
Bayes text classification that instead uses a generative model and document representation in
which each word in the vocabulary is a binary feature, and is modeled by a mixture of multi-
variate Bernoullis (Robertson & Sparck-Jones, 1976; Lewis, 1992; Larkey & Croft, 1996;
Koller & Sahami, 1997). Empirical comparisons show that the multinomial formulation
yields classifiers with consistently higher accuracy (McCallum & Nigam, 1998).

5. Incorporating unlabeled data with EM

We now proceed to the main topic of this paper: how unlabeled data can be used to
improve a text classifier. When naive Bayes is given just a small set of labeled training
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data, classification accuracy will suffer because variance in the parameter estimates of the
generative model will be high. However, by augmenting this small set with a large set
of unlabeled data, and combining the two sets with EM, we can improve the parameter
estimates.

EM is a class of iterative algorithms for maximum likelihood or maximum a posteri-
ori estimation in problems with incomplete data (Dempster, Laird, & Rubin, 1977). In
our case, the unlabeled data are considered incomplete because they come without class
labels.

Applying EM to naive Bayes is quite straightforward. First, the naive Bayes parameters,
θ̂ , are estimated from just the labeled documents. Then, the classifier is used to assign
probabilistically-weighted class labels to each unlabeled document by calculating expec-
tations of the missing class labels, P(cj | di ; θ̂ ). Next, new classifier parameters,θ̂ , are
estimated using all the documents—both the originally and newly labeled. These last two
steps are iterated untilθ̂ does not change. As shown by Dempster, Laird, & Rubin (1977), at
each iteration, this process is guaranteed to find model parameters that have equal or higher
likelihood than at the previous iteration.

This section describes EM and our extensions within the probabilistic framework of naive
Bayes text classification.

5.1. Basic EM

We are given a set of training documentsD and the task is to build a classifier in the form
of the previous section. However, unlike previously, in this section we assume that only
some subset of the documentsdi ∈ Dl come with class labelsyi ∈ C, and for the rest of the
documents, in subsetDu, the class labels are unknown. Thus we have a disjoint partitioning
of D, such thatD = Dl ∪Du.

As in Section 4.2, learning a classifier is approached as calculating a maximum a posteriori
estimate ofθ , i.e. arg maxθ P(θ)P(D | θ). Consider the second term of the maximization,
the probability of all the training data,D. The probability of all the data is simply the
product over all the documents, because each document is independent of the others, given
the model. For the unlabeled data, the probability of an individual document is a sum of total
probability over all the classes, as in Eq. (1). For the labeled data, the generating component
is already given by labelsyi , and we do not need to refer to all mixture components—just
the one corresponding to the class. Thus, the probability of all the data is:

P(D | θ) =
∏

di∈Du

|C|∑
j=1

P(cj | θ)P(di | cj ; θ)

×
∏

di∈Dl

P(yi = cj | θ)P(di | yi = cj ; θ). (8)

Instead of trying to maximize P(θ | D) directly we work with log(P(θ | D)) instead, as a
step towards making maximization (by solving the system of partial derivatives) tractable.
Let l (θ | D) ≡ log(P(θ)P(D | θ)). Then, using Eq. (8), we write
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l (θ | D) = log(P(θ))+
∑

di∈Du

log
|C|∑
j=1

P(cj | θ)P(di | cj ; θ)

+
∑
di∈Dl

log(P(yi = cj | θ)P(di | yi = cj ; θ)). (9)

Notice that this equation contains a log of sums for the unlabeled data, which makes a
maximization by partial derivatives computationally intractable. Consider, though, that if
we had access to the class labels of all the documents—represented as the matrix of binary
indicator variablesz, zi = 〈zi 1, . . . , zi |C|〉, wherezi j = 1 iff yi = cj elsezi j = 0—then we
could express thecompletelog likelihood of the parameters,lc(θ | D, z), without a log of
sums, because only one term inside the sum would be non-zero.

lc(θ | D; z) = log(P(θ))+
∑
di∈D

|C|∑
j=1

zi j log(P(cj | θ)P(di | cj ; θ)) (10)

If we replacezi j by its expected value according to the current model, then Eq. (10)
bounds from below the incomplete log likelihood from Eq. (9). This can be shown by an
application of Jensen’s inequality (e.g.E[log(X)] ≥ log(E[X])). As a result one can find a
locally maximumθ̂ by a hill climbing procedure. This was formalized as theExpectation-
Maximization(EM) algorithm by Dempster, Laird, & Rubin (1997).

The iterative hill climbing procedure alternately recomputes the expected value ofz and
the maximum a posteriori parameters given the expected value ofz, E[z]. Note that for the
labeled documentszi is already known. It must, however, be estimated for the unlabeled
documents. Let̂z(k) and θ̂ (k) denote the estimates forz and θ at iterationk. Then, the
algorithm finds a local maximum ofl (θ | D) by iterating the following two steps:

• E-step: Set̂z(k+1) = E[z |D; θ̂ (k)].
• M-step: Setθ̂ (k+1) = arg maxθ P(θ |D; ẑ(k+1)

).

In practice, the E-step corresponds to calculating probabilistic labels P(cj | di ; θ̂ ) for
the unlabeled documents by using the current estimate of the parameters,θ̂ , and Eq. (7).
The M-step, maximizing the complete likelihood equation, corresponds to calculating a
new maximum a posteriori estimate for the parameters,θ̂ , using the current estimates for
P(cj | di ; θ̂ ), and Eqs. (5) and (6).

Our iteration process is initialized with a “priming” M-step, in which only the labeled
documents are used to estimate the classifier parameters,θ̂ , as in Eqs. (5) and (6). Then the
cycle begins with an E-step that uses this classifier to probabilistically label the unlabeled
documents for the first time.

The algorithm iterates over the E- and M-steps until it converges to a point whereθ̂ does
not change from one iteration to the next. Algorithmically, we determine that convergence
has occurred by observing a below-threshold change in the log-probability of the parameters
(Eq. (10)), which is the height of the surface on which EM is hill-climbing.

Table 1 gives an outline of the basic EM algorithm from this section.



TEXT CLASSIFICATION USING EM 113

Table 1. The basic EM algorithm described in Section 5.1.

• Inputs: CollectionsDl of labeled documents andDu of unlabeled documents.

• Build an initial naive Bayes classifier,θ̂ , from the labeled documents,Dl , only. Use maximum a posteriori
parameter estimation to find̂θ = arg maxθ P(D | θ)P(θ) (see Eqs. (5) and (6)).

• Loop while classifier parameters improve, as measured by the change inlc(θ |D; z) (the complete log
probability of the labeled and unlabeled data, and the prior) (see Eq. (10)).

• (E-step)Use the current classifier,θ̂ , to estimate component membership of each unlabeled document,
i.e., the probability that each mixture component (and class) generated each document,
P(cj | di ; θ̂ ) (see Eq. (7)).

• (M-step) Re-estimate the classifier,θ̂ , given the estimated component membership of each document.
Use maximum a posteriori parameter estimation to findθ̂ = arg maxθ P(D | θ)P(θ)
(see Eqs. (5) and (6)).

• Output: A classifier,θ̂ , that takes an unlabeled document and predicts a class label.

5.2. Discussion

In summary, EM finds âθ that locally maximizes the likelihood of its parameters givenall
the data—both the labeled and the unlabeled. It provides a method whereby unlabeled data
can augment limited labeled data and contribute to parameter estimation. An interesting
empirical question is whether these higher likelihood parameter estimates will improve
classification accuracy. Section 4.4 discusses the fact that naive Bayes usually performs
classification well despite violations of its assumptions. Will EM also have this property?

Note that the justifications for this approach depend on the assumptions stated in Section 3,
namely, that the data is produced by a mixture model, and that there is a one-to-one cor-
respondence between mixture components and classes. When these assumptions do not
hold—as certainly is the case in real-world textual data—the benefits of unlabeled data are
less clear.

Our experimental results in Section 6 show that this method can indeed dramatically
improve the accuracy of a document classifier, especially when there are only a few labeled
documents. But on some data sets, when there are a lot of labeled and a lot of unlabeled
documents, this is not the case. In several experiments, the incorporation of unlabeled data
decreases, rather than increases, classification accuracy.

Next we describe changes to the basic EM algorithm described above that aim to address
performance degradation due to violated assumptions.

5.3. Augmented EM

This section describes two extensions to the basic EM algorithm described above. The
extensions help improve classification accuracy even in the face of somewhat violated
assumptions of the generative model. In the first we add a new parameter to modulate the
degree to which EM weights the unlabeled data; in the second we augment the model to
relax one of the assumptions about the generative model.
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5.3.1. Weighting the unlabeled data.As described in the introduction, a common scenario
is that few labeled documents are on hand, but many orders of magnitude more unlabeled
documents are readily available. In this case, the great majority of the data determining EM’s
parameter estimates comes from the unlabeled set. In these circumstances, we can think
of EM as almost entirely performing unsupervised clustering, since the model is mostly
positioning the mixture components to maximize the likelihood of the unlabeled documents.
The number of labeled data is so small in comparison to the unlabeled, that the only
significant effect of the labeled data is to initialize the classifier parameters (i.e. determining
EM’s starting point for hill climbing), and to identify each component with a class label.

When the two mixture model assumptions are true, and the natural clusters of the data
are in correspondence with the class labels, then unsupervised clustering with many unla-
beled documents will result in mixture components that are useful for classification (c.f.
Section 2, where infinite amounts of unlabeled data are sufficient to learn the parameters of
the mixture components). However, when the mixture model assumptions are not true, the
natural clustering of the unlabeled data may produce mixture components that are not in
correspondence with the class labels, and are therefore detrimental to classification accu-
racy. This effect is particularly apparent when the number of labeled documents is already
large enough to obtain reasonably good parameter estimates for the classifier, yet the orders
of magnitude more unlabeled documents still overwhelm parameter estimation and thus
badly skew the estimates.

This subsection describes a method whereby the influence of the unlabeled data is mod-
ulated in order to control the extent to which EM performs unsupervised clustering. We
introduce a new parameterλ, 0≤ λ ≤ 1, into the likelihood equation which decreases the
contribution of the unlabeled documents to parameter estimation. We term the resulting
method EM-λ. Instead of using EM to maximize Eq. (10), we instead maximize:

lc(θ |D; z) = log(P(θ))+
∑
di∈Dl

|C|∑
j=1

zi j log(P(cj | θ)P(di | cj ; θ))

+ λ
(∑

di∈Du

|C|∑
j=1

zi j log(P(cj | θ)P(di | cj ; θ))
)
. (11)

Notice that whenλ is close to zero, the unlabeled documents will have little influence
on the shape of EM’s hill-climbing surface. Whenλ = 1, each unlabeled document will be
weighted the same as a labeled document, and the algorithm is the same as the original EM
previously described.

When iterating to maximize Eq. (11), the E-step is performed exactly as before. The
M-step is different, however, and entails the following substitutes for Eqs. (5) and (6). First
define3(i ) to be the weighting factorλ wheneverdi in the unlabeled set, and to be 1
wheneverdi is in the labeled set:

3(i ) =
{
λ if di ∈ Du

1 if di ∈ Dl .
(12)
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Then the new estimatêθwt |cj is again a ratio of word counts, but where the counts of the
unlabeled documents are decreased by a factor ofλ:

θ̂wt | cj ≡ P(wt | cj ; θ̂ ) = 1+∑|D|i=13(i )N(wt , di )P(yi = cj | di )

|V | +∑|V |s=1

∑|D|
i=13(i )N(ws, di )P(yi = cj | di )

. (13)

Class prior probabilities,̂θcj , are modified similarly:

θ̂cj ≡ P(cj | θ̂ ) = 1+∑|D|i=13(i )P(yi = cj | di )

|C| + |Dl | + λ|Du| . (14)

These equations can be derived by again solving the system of partial derivatives using
Lagrange multipliers to enforce the constraint that probabilities sum to one.

In this paper we select the value ofλ that maximizes the leave-one-out cross-validation
classification accuracy of the labeled training data. Experimental results with this technique
are described in Section 6.3. As shown there, settingλ to some value between 0 and 1 can
result in classification accuracy higher than eitherλ = 0 or λ = 1, indicating that there
can be value in the unlabeled data even when its natural clustering would result in poor
classification.

5.3.2. Multiple mixture components per class.The EM-λ technique described above
addresses violated mixture model assumptions by reducing the effect of those violated
assumptions on parameter estimation. An alternative approach is to attack the problem
head-on by removing or weakening a restrictive assumption. This subsection takes exactly
this approach by relaxing the assumption of a one-to-one correspondence between mixture
components and classes. We replace it with a less restrictive assumption: amany-to-one
correspondence between mixture components and classes.

For textual data, this corresponds to saying that a class may be comprised of several dif-
ferent sub-topics, each best captured with a different word distribution. Furthermore, using
multiple mixture components per class can capture some dependencies between words. For
example, consider asports class consisting of documents about both hockey and baseball.
In these documents, the words “ice” and “puck” are likely to co-occur, and the words “bat”
and “base” are likely to co-occur. However, these dependencies cannot be captured by a
single multinomial distribution over words in thesports class. On the other hand, with mul-
tiple mixture components per class, one multinomial can cover the hockey sub-topic, and
another the baseball sub-topic—thus more accurately capturing the co-occurrence patterns
of the above four words.

For some or all of the classes we now allow multiple multinomial mixture components.
Note that as a result, there are now “missing values” for the labeled as well as the unlabeled
documents—it is unknown which mixture component, among those covering the given
label, is responsible for generating a particular labeled document. Parameter estimation
will still be performed with EM except that, for each labeled document, we must now
estimate which mixture component the document came from.
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Let us introduce the following notation for separating mixture components from classes.
Instead of usingcj to denote both a class and its corresponding mixture component, we will
now writeta for theath class (“topic”), andcj will continue to denote thej th mixture compo-
nent. We write P(ta | cj ; θ̂ ) ∈ {0, 1} for the pre-determined, deterministic, many-to-one
mapping between mixture components and classes.

Parameter estimation is again done with EM. The M-step is the same as basic EM, build-
ing maximum a posteriori parameter estimates for the multinomial of each component.
In the E-step, unlabeled documents are treated as before, calculating probabilistically-
weighted mixture component membership, P(cj | di ; θ̂ ). For labeled documents, the previ-
ous P(cj | di ; θ̂ ) ∈ {0, 1} that was considered to be fixed by the class label is now allowed
to vary between 0 and 1 for mixture components assigned to that document’s class. Thus,
the algorithm also calculates probabilistically-weighted mixture component membership
for the labeled documents. Note, however, that all P(cj | di ; θ̂ ), for which P(yi = ta | cj ; θ̂ )
is zero, are clamped at zero, and the rest are normalized to sum to one.

Multiple mixture components for the same class are initialized by randomly spreading
the labeled training data across the mixture components matching the appropriate class
label. That is, components are initialized by performing a randomized E-step in which
P(cj | di ; θ̂ ) is sampled from a uniform distribution over mixture components for which
P(ta = yi | cj ; θ̂ ) is one.

When there are multiple mixture components per class, classification becomes a matter of
probabilistically “classifying” documents into the mixture components, and then summing
the mixture component probabilities into class probabilities:

P(ta | di ; θ̂ ) =
∑

cj

P(ta | cj ; θ̂ )
P(cj | θ̂ )

∏|di |
k=1 P

(
wdi,k

∣∣cj ; θ̂
)∑|C|

r=1 P(cr | θ̂ )
∏|di |

k=1 P
(
wdi,k

∣∣cr ; θ̂
) . (15)

In this paper, we select the number of mixture components per class by cross-validation.
Table 2 gives an outline of the EM algorithm with the extensions of this and the previous
section.

Experimental results from this technique are described in Section 6.4. As shown there,
when the data are not naturally modeled by a single component per class, the use of unlabeled
data with EM degrades performance. However, when multiple mixture components per class
are used, performance with unlabeled data and EM is superior to naive Bayes.

6. Experimental results

In this section, we provide empirical evidence that combining labeled and unlabeled training
documents using EM outperforms traditional naive Bayes, which trains on labeled docu-
ments alone. We present experimental results with three different text corpora: UseNet news
articles (20 Newsgroups), web pages (WebKB), and newswire articles (Reuters).5

Results show that improvements in accuracy due to unlabeled data are often dramatic,
especially when the number of labeled training documents is low. For example, on the20
Newsgroups data set, classification error is reduced by 30% when trained with 300 labeled
and 10000 unlabeled documents.
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Table 2. The algorithm described in this paper, and used to generate the experimental results in Section 6. The
algorithm enhancements for EM-λ that vary the contribution of the unlabeled data (Section 5.3.1) are indicated
by [Weighted only]. The optional use of multiple mixture components per class (Section 5.3.2) is indicated by
[Multiple only] . Unmarked paragraphs are common to all variations of the algorithm.

• Inputs: CollectionsDl of labeled documents andDu of unlabeled documents.

• [Weighted only]: Set the discount factor of the unlabeled data,λ, by cross-validation
(see Sections 6.1 and 6.3).

• [Multiple only]: Set the number of mixture components per class by cross-validation
(see Sections 6.1 and 6.4).

• [Multiple only]: For each labeled document, randomly assign P(cj | di ; θ̂ ) for mixture components
that correspond to the document’s class label, to initialize each mixture component.

• Build an initial naive Bayes classifier,θ̂ , from the labeled documents only. Use maximum a posteriori
parameter estimation to find̂θ = arg maxθ P(D | θ)P(θ) (see Eqs. (5) and (6)).

• Loop while classifier parameters improve (0.05< 1lc(θ |D; z), the change in complete log probability of
the labeled and unlabeled data, and the prior) (see Eq. (10):

• (E-step)Use the current classifier,θ̂ , to estimate the component membership of each document, i.e. the
probability that each mixture component generated each document, P(cj | di ; θ̂ ) (see Eq. (7)).

[Multiple only]: Restrict the membership probability estimates of labeled documents to be zero for
components associated with other classes, and renormalize.

• (M-step) Re-estimate the classifier,θ̂ , given the estimated component membership of each document.
Use maximum a posteriori parameter estimation to findθ̂ = arg maxθ P(D | θ)P(θ)
(see Eqs. (5) and (6)).

[Weighted only]: When counting events for parameter estimation, word and document counts from
unlabeled documents are reduced by a factorλ (see Eqs. (13) and (14)).

• Output: A classifier,θ̂ , that takes an unlabeled document and predicts a class label.

On certain data sets, however, (and especially when the number of labeled documents
is high), the incorporation of unlabeled data with the basic EM scheme may reduce rather
than increase accuracy. We show that the application of the EM extensions described in the
previous section increases performance beyond that of naive Bayes.

6.1. Datasets and protocol

The 20 Newsgroups data set (Joachims, 1997; McCallum, et al., 1998; Mitchell, 1997),
collected by Ken Lang, consists of 20017 articles divided almost evenly among 20 different
UseNet discussion groups. The task is to classify an article into the one newsgroup (of
twenty) to which it was posted. Many of the categories fall into confusable clusters; for
example, five of them arecomp.* discussion groups, and three of them discuss religion.
When words from a stoplist of common short words are removed, there are 62258 unique
words that occur more than once; other feature selection is not used. When tokenizing this
data, we skip the UseNet headers (thereby discarding the subject line); tokens are formed
from contiguous alphabetic characters, which are left unstemmed. The word counts of each
document are scaled such that each document has constant length, with potentially fractional
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word counts. Our preliminary experiments with20 Newsgroups indicated that naive Bayes
classification was better with this word count normalization.

The20 Newsgroups data set was collected from UseNet postings over a period of several
months in 1993. Naturally, the data have time dependencies—articles nearby in time are
more likely to be from the same thread, and because of occasional quotations, may contain
many of the same words. In practical use, a classifier for this data set would be asked
to classify future articles after being trained on articles from the past. To preserve this
scenario, we create a test set of 4000 documents by selecting by posting date the last 20%
of the articles from each newsgroup. An unlabeled set is formed by randomly selecting
10000 documents from those remaining. Labeled training sets are formed by partitioning
the remaining 6000 documents into non-overlapping sets. The sets are created with equal
numbers of documents per class. For experiments with different labeled set sizes, we create
up to ten sets per size; obviously, fewer sets are possible for experiments with labeled
sets containing more than 600 documents. The use of each non-overlapping training set
comprises a new trial of the given experiment. Results are reported as averages over all
trials of the experiment.

TheWebKB data set (Craven et al., 1998) contains 8145 web pages gathered from univer-
sity computer science departments. The collection includes the entirety of four departments,
and additionally, an assortment of pages from other universities. The pages are divided into
seven categories:student, faculty, staff, course, project, department andother. In this
paper, we use the four most populous non-other categories:student, faculty, course and
project—all together containing 4199 pages. The task is to classify a web page into the
appropriate one of the four categories. For consistency with previous studies with this data
set (Craven et al., 1998), when tokenizing theWebKB data, numbers were converted into a
time or a phone number token, if appropriate, or otherwise a sequence-of-length-n token.

We did not use stemming or a stoplist; we found that using a stoplist actually hurt
performance. For example, “my” is an excellent indicator of a student homepage and is
the fourth-ranked word by information gain. We limit the vocabulary to the 300 most
informative words, as measured by average mutual information with the class variable.
This feature selection method is commonly used for text (Yang & Pederson, 1997; Koller &
Sahami, 1997; Joachims, 1997). We selected this vocabulary size by running leave-one-out
cross-validation on the training data to optimize classification accuracy.

The WebKB data set was collected as part of an effort to create a crawler that ex-
plores previously unseen computer science departments and classifies web pages into a
knowledge-base ontology. To mimic the crawler’s intended use, and to avoid reporting
performance based on idiosyncrasies particular to a single department, we test using a
leave-one-university-out approach. That is, we create four test sets, each containing all the
pages from one of the four complete computer science departments. For each test set, an
unlabeled set of 2500 pages is formed by randomly selecting from the remaining web pages.
Non-overlapping training sets are formed by the same method as in20 Newsgroups. Also
as before, results are reported as averages over all trials that share the same number of
labeled training documents.

The Reuters 21578 Distribution 1.0 data set consists of 12902 articles and 90 topic
categories from the Reuters newswire. Following several other studies (Joachims, 1998;
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Liere & Tadepalli, 1997) we build binary classifiers for each of the ten most populous
classes to identify the news topic. We use all the words inside the<TEXT> tags, including
the title and the dateline, except that we remove theREUTERand&# tags that occur at the
top and bottom of every document. We use a stoplist, but do not stem.

In Reuters, classifiers for different categories perform best with widely varying vocab-
ulary sizes (which are chosen by average mutual information with the class variable). This
variance in optimal vocabulary size is unsurprising. As previously noted (Joachims, 1997),
categories like “wheat” and “corn” are known for a strong correspondence between a small
set of words (like their title words) and the categories, while categories like “acq” are
known for more complex characteristics. The categories with narrow definitions attain best
classification with small vocabularies, while those with a broader definition require a large
vocabulary. The vocabulary size for eachReuters trial is selected by optimizing accuracy
as measured by leave-one-out cross-validation on the labeled training set.

As with the 20 Newsgroups data set, there are time dependencies inReuters. The
standard ‘ModApte’ train/test split divides the articles by time, such that the later 3299
documents form the test set, and the earlier 9603 are available for training. In our experi-
ments, 7000 documents from this training set are randomly selected to form the unlabeled
set. From the remaining training documents, we randomly select up to ten non-overlapping
training sets of ten positively labeled documents and 40 negatively labeled documents, as
previously described for the other two data sets. We use non-uniform number of labelings
across the classes because thenegative class is much more frequent than the positive class
in all of the binaryReuters classification tasks.

Results onReuters are reported as precision-recall breakeven points, a standard informa-
tion retrieval measure for binary classification. Accuracy is not a good performance metric
here because very high accuracy can be achieved by always predicting the negative class.
The task on this data set is less like classification than it is like filtering—find the few
positive examples from a large sea of negative examples. Recall and precision capture the
inherent duality of this task, and are defined as:

Recall= # of correct positive predictions

# of positive examples
(16)

Precision= # of correct positive predictions

# of positive predictions
. (17)

The classifier can achieve a trade-off between precision and recall by adjusting the de-
cision boundary between the positive and negative class away from its previous default of
P(cj | di ; θ̂ ) = 0.5. The precision-recall breakeven point is defined as the precision and
recall value at which the two are equal (e.g. Joachims, 1998).

The algorithm used for experiments with EM is described in Table 2.
In this section, when leave-one-out cross-validation is performed in conjunction with EM,

we make one simplification for computational efficiency. We first run EM to convergence
with all the training data, and then subtract the word counts of each labeled document in
turn before testing that document. Thus, when performing cross-validation for a specific
combination of parameter settings, only one run of EM is required instead of one run of EM
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Figure 2. Classification accuracy on the20 Newsgroups data set, both with and without 10,000 unlabeled
documents. With small amounts of training data, using EM yields more accurate classifiers. With large amounts
of labeled training data, accurate parameter estimates can be obtained without the use of unlabeled data, and the
two methods begin to converge.

per labeled example. Note, however, that there are still some residual effects of the held-out
document.

The computational complexity of EM, however, is not prohibitive. Each iteration requires
classifying the training documents (E-step), and building a new classifier (M-step). In our
experiments, EM usually converges after about 10 iterations. The wall-clock time to read
the document-word matrix from disk, build an EM model by iterating to convergence, and
classify the test documents is less than one minute for theWebKB data set, and less than
15 minutes for20 Newsgroups. The20 Newsgroups data set takes longer because it has
more documents and more words in the vocabulary.

6.2. EM with unlabeled data increases accuracy

We first consider the use of basic EM to incorporate information from unlabeled documents.
Figure 2 shows the effect of using basic EM with unlabeled data on the20 Newsgroups data
set. The vertical axis indicates average classifier accuracy on test sets, and the horizontal
axis indicates the amount of labeled training data on a log scale. We vary the amount of
labeled training data, and compare the classification accuracy of traditional naive Bayes (no
unlabeled data) with an EM learner that has access to 10000 unlabeled documents.

EM performs significantly better. For example, with 300 labeled documents (15 docu-
ments per class), naive Bayes reaches 52% accuracy while EM achieves 66%. This represents
a 30% reduction in classification error. Note that EM also performs well even with a very
small number of labeled documents; with only 20 documents (a single labeled document
per class), naive Bayes obtains 20%, EM 35%. As expected, when there is a lot of labeled
data, and the naive Bayes learning curve is close to a plateau, having unlabeled data does not
help nearly as much, because there is already enough labeled data to accurately estimate the
classifier parameters. With 5500 labeled documents (275 per class), classification accuracy
increases from 76% to 78%. Each of these results is statistically significant (p < 0.05).6
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Figure 3. Classification accuracy while varying the number of unlabeled documents. The effect is shown on the
20 Newsgroups data set, with 5 different amounts of labeled documents, by varying the amount of unlabeled
data on the horizontal axis. Having more unlabeled data helps. Note the dip in accuracy when a small amount of
unlabeled data is added to a small amount of labeled data. We hypothesize that this is caused by extreme, almost 0
or 1, estimates of component membership, P(cj | di , θ̂ ), for the unlabeled documents (as caused by naive Bayes’
word independence assumption).

These results demonstrate that EM finds parameter estimates that improve classification
accuracy and reduce the need for labeled training examples. For example, to reach 70%
classification accuracy, naive Bayes requires 2000 labeled examples, while EM requires
only 600 labeled examples to achieve the same accuracy.

In figure 3 we consider the effect of varying the amount of unlabeled data. For five different
quantities of labeled documents, we hold the number of labeled documents constant, and
vary the number of unlabeled documents in the horizontal axis. Naturally, having more
unlabeled data helps, and it helps more when there is less labeled data.

Notice that adding a small amount of unlabeled data to a small amount of labeled data
actually hurts performance. We hypothesize that this occurs because the word independence
assumption of naive Bayes leads to overly-confident P(cj | di , θ̂ ) estimates in the E-step,
and the small amount of unlabeled data is distributed too sharply. (Without this bias in naive
Bayes, the E-step would spread the unlabeled data more evenly across the classes.) When
the number of unlabeled documents is large, however, this problem disappears because the
unlabeled set provides a large enough sample to smooth out the sharp discreteness of naive
Bayes’ overly-confident classification.

We now move on to a different data set. To provide some intuition about why EM works,
we present a detailed trace of one example from theWebKB data set. Table 3 shows the
evolution of the classifier over the course of two EM iterations. Each column shows the
ordered list of words that the model indicates are most “predictive” of thecourse class.
Words are judged to be “predictive” using a weighted log likelihood ratio.7 The symbolD
indicates an arbitrary digit. At Iteration 0, the parameters are estimated from a randomly-
chosen single labeled document per class. Notice that thecourse document seems to be
about a specific Artificial Intelligence course at Dartmouth. After two EM iterations with
2500 unlabeled documents, we see that EM has used the unlabeled data to find words that
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Table 3. Lists of the words most predictive of thecourse class in theWebKB data set, as they change over
iterations of EM for a specific trial. By the second iteration of EM, many commoncourse-related words appear.
The symbolD indicates an arbitrary digit.

Iteration 0 Iteration 1 Iteration 2

intelligence DD D

DD D DD

artificial lecture lecture

understanding cc cc

DDw D? DD:DD

dist DD:DD due

identical handout D?

rus due homework

arrange problem assignment

games set handout

dartmouth tay set

natural DDam hw

cognitive yurttas exam

logic homework problem

proving kfoury DDam

prolog sec postscript

knowledge postscript solution

human exam quiz

representation solution chapter

field assaf ascii

are more generally indicative of courses. The classifier corresponding to the first column
achieves 50% accuracy; when EM converges, the classifier achieves 71% accuracy.

6.3. Varying the weight of the unlabeled data

When graphing performance on this data set, we see that the incorporation of unlabeled
data can also decrease, rather than increase, classification accuracy. The graph in figure 4
shows the performance of basic EM (with 2500 unlabeled documents) onWebKB. Again,
EM improves accuracy significantly when the amount of labeled data is small. When there
are four labeled documents (one per class), traditional naive Bayes attains 40% accuracy,
while EM reaches 55%. When there is a lot of labeled data, however, EM hurts performance
slightly. With 240 labeled documents, naive Bayes obtains 81% accuracy, while EM does
worse at 79%. Both of these differences in performance are statistically significant (p <
0.05), for three and two of the university test sets, respectively.

As discussed in Section 5.3.1, we hypothesize that EM hurts performance here because
the data do not fit the assumptions of the generative model—that is, the mixture components



TEXT CLASSIFICATION USING EM 123

Figure 4. Classification accuracy on theWebKB data set, both with and without 2500 unlabeled documents.
When there are small numbers of labeled documents, EM improves accuracy. When there are many labeled
documents, however, EM degrades performance slightly—indicating a misfit between the data and the assumed
generative model.

that best explain the unlabeled data are not in precise correspondence with the class labels.
It is not surprising that the unlabeled data can throw off parameter estimation when one
considers that the number of unlabeled documents is much greater than the number of
labeled documents (e.g. 2500 versus 240), and thus, even at the points in figure 4 with
the largest amounts of labeled data, the great majority of the probability mass used in the
M-step to estimate the classifier parameters actually comes from the unlabeled data.

To remedy this dip in performance, we use EM-λ to reduce the weight of the unlabeled
data by varyingλ in Eqs. (13) and (14). Figure 5 plots classification accuracy while varying
λ to achieve the relative weighting indicated in the horizontal axis, and does so for three
different amounts of labeled training data. The bottom curve is obtained using 40 labeled
documents—a vertical slice in figure 4 at a point where EM with unlabeled data gives higher
accuracy than naive Bayes. Here, the best weighting of the unlabeled data is high, indicating
that classification can be improved by augmenting the sparse labeled data with heavy reliance
on the unlabeled data. The middle curve is obtained using 80 labeled documents—a slice
near the point where EM and naive Bayes performance cross. Here, the best weighting
is in the middle, indicating that EM-λ performs better than either naive Bayes or basic
EM. The top curve is obtained using 200 labeled documents—a slice where unweighted
EM performance is lower than traditional naive Bayes. Less weight should be given to the
unlabeled data at this point.

Note the inverse relationship between the labeled data set size and the best weighting
factor—the smaller labeled data set, the larger the best weighting of the unlabeled data.
This trend holds across all amounts of labeled data. Intuitively, when EM has very little
labeled training data, parameter estimation is so desperate for guidance that EM with all the
unlabeled data helps in spite of the somewhat violated assumptions. However, when there is
enough labeled training data to sufficiently estimate the parameters, less weight should be
given to the unlabeled data. Finally, note that the best-performing values ofλ are somewhere
between the extremes, remembering that the right-most point corresponds to EM with the
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Figure 5. The effects of varyingλ, the weighting factor on the unlabeled data in EM-λ. These three curves
from theWebKB data set correspond to three different amounts of labeled data. When there is less labeled data,
accuracy is highest when more weight is given to the unlabeled data. When the amount of labeled data is large,
accurate parameter estimates are attainable from the labeled data alone, and the unlabeled data should receive less
weight. With moderate amounts of labeled data, accuracy is better in the middle than at either extreme. Note the
magnified vertical scale.

weighting used to generate figure 4, and the left-most to regular naive Bayes. Paired t-tests
across the trials of all the test universities show that the best-performing points on these
curves are statistically significantly higher than either end point, except for the difference
between the maxima and basic EM with 40 labeled documents (p < 0.05).

In practice the value of the tuning parameterλ can be selected by cross-validation.
In our experiments we selectλ by leave-one-out cross-validation on the labeled training
set for each trial, as discussed in Section 6.1. Figure 6 shows the accuracy for the best
possibleλ, and the accuracy when selectingλ via cross-validation. Basic EM and naive
Bayes accuracies are also shown for comparison. Whenλ is perfectly selected, its accuracy
dominates the basic EM and naive Bayes curves. Cross-validation selectsλ’s that, for small
amounts of labeled documents, perform about as well as EM. For large amounts of labeled
documents, cross-validation selectsλ’s that do not suffer from the degraded performance
seen in basic EM, and also performs at least as well as naive Bayes. For example, at the
240 document level seen before, theλ picked by cross-validation gives only 5% of the
weight to the unlabeled data, instead of the 91% given by basic EM. Doing so provides an
accuracy of 82%, compared to 81% for naive Bayes and 79% for basic EM. This is not
statistically significantly different from naive Bayes, and is statistically significantly higher
than basic EM for two of the four test sets (bothp < 0.05). These results indicate that we
can automatically avoid EM’s degradation in accuracy at large training set sizes and still
preserve the benefits of EM seen with small labeled training sets.

These results also indicate that when the training set size is very small improved methods
of selectingλ could significantly increase the practical performance of EM-λ even further.
Note that in these cases, cross-validation has only a few documents with which to choose
λ. The end of Section 6.4 suggests some methods that may perform better than cross-
validation.
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Figure 6. Classification accuracy on theWebKB data set, with modulation of the unlabeled data by the weighting
factorλ. The top curve shows accuracy when using the best value ofλ. In the second curve,λ is chosen by cross-
validation. With small amounts of labeled data, the results are similar to basic EM; with large amounts of labeled
data, the results are more accurate than basic EM. Thanks to the weighting factor, large amounts of unlabeled data
no longer degrades accuracy, as it did in figure 4, and yet the algorithm retains the large improvements with small
amounts of labeled data. Note the magnified vertical axis to facilitate the comparisons.

6.4. Multiple mixture components per class

Faced with data that do not fit the assumptions of our model, theλ-tuning approach described
above addresses this problem by allowing the model to incrementally ignore the unlabeled
data. Another, more direct approach, described in Section 5.3.2, is to change the model so
that it more naturally fits the data. Flexibility can be added to the mapping between mixture
components and class labels by allowing multiple mixture components per class. We expect
this to improve performance when data for each class is, in fact, multi-modal.

With an eye towards testing this hypothesis, we apply EM to theReuters corpus. Since
the documents in this data set can have multiple class labels, each category is traditionally
evaluated with a binary classifier. Thus, thenegative class covers 89 distinct categories,
and we expect this task to strongly violate the assumption that all the data for thenegative
class are generated by a single mixture component. For this reason, we model thepositive
class with a single mixture component and thenegative class with between one and forty
mixture components, both with and without unlabeled data.

Table 4 contains a summary of results on the test set for modeling thenegative class with
multiple mixture components. The NB1 column shows precision-recall breakeven points
from standard naive Bayes (with just the labeled data), that models thenegative class with
a single mixture component. The NB* column shows the results of modeling thenegative
class with multiple mixture components (again using just the labeled data). In the NB*
column, the number of components has been selected to optimize the best precision-recall
breakeven point. The median number of components selected across trials is indicated in
parentheses beside the breakeven point. Note that even before we consider the effect of
unlabeled data, using this more complex representation on this data improves performance
over traditional naive Bayes.
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Table 4. Precision-recall breakeven points showing performance of binary classifiers onReuters with traditional
naive Bayes (NB1), multiple mixture components using just labeled data (NB*), basic EM (EM1) with labeled and
unlabeled data, and multiple mixture components EM with labeled and unlabeled data (EM*). For NB* and EM*,
the number of components is selected optimally for each trial, and the median number of components across the
trials used for thenegative class is shown in parentheses. Note that the multi-component model is more natural
for Reuters, where thenegative class consists of many topics. Using both unlabeled data and multiple mixture
components per class increases performance over either alone, and over naive Bayes.

Category NB1 NB* EM1 EM* EM* vs. NB1 EM* vs. NB*

acq 69.4 74.3 (4) 70.7 83.9 (10) +14.5 +9.6

corn 44.3 47.8 (3) 44.6 52.8 (5) +8.5 +5.0

crude 65.2 68.3 (2) 68.2 75.4 (8) +10.2 +7.1

earn 91.1 91.6 (1) 89.2 89.2 (1) −1.9 −2.4

grain 65.7 66.6 (2) 67.0 72.3 (8) +6.3 +5.7

interest 44.4 54.9 (5) 36.8 52.3 (5) +7.9 −2.6

money-fx 49.4 55.3 (15) 40.3 56.9 (10) +7.5 +1.6

ship 44.3 51.2 (4) 34.1 52.5 (7) +8.2 +1.3

trade 57.7 61.3 (3) 56.1 61.8 (3) +4.1 +0.5

wheat 56.0 67.4 (10) 52.9 67.8 (10) +11.8 +0.4

The column labeled EM1 shows results with basic EM (i.e. with a singlenegative
component). Notice that here performance is often worse than naive Bayes (NB1). We
hypothesize that, because thenegative class is truly multi-modal, fitting a single naive Bayes
class with EM to the data does not accurately capture thenegative class word distribution.

The column labeled EM* shows results of EM with multiple mixture components, again
selecting the best number of components. Here performance is better than both NB1 (tra-
ditional naive Bayes) and NB* (naive Bayes with multiple mixture components per class).
This increase, measured over all trials ofReuters, is statistically significant (p < 0.05).
This indicates that while the use of multiple mixture components increases performance
over traditional naive Bayes, the combination of unlabeled data and multiple mixture com-
ponents increases performance even more.

Furthermore, it is interesting to note that, on average, EM* uses more mixture components
than NB*—suggesting that the addition of unlabeled data reduces variance and supports
the use of a more expressive model.

Tables 5 and 6 show the complete results for experiments using multiple mixture compo-
nents with and without unlabeled data, respectively. Note that in general, using too many or
too few mixture components hurts performance. With too few components, our assumptions
are overly restrictive. With too many components, there are more parameters to estimate
from the same amount of data. Table 7 shows the same results as Table 4, but for classi-
fication accuracy, and not precision-recall breakeven. The general trends for accuracy are
the same as for precision-recall. However, for accuracy, the optimal number of mixture
components for thenegative class is greater than for precision-recall, because by its na-
ture precision-recall focuses more on modeling thepositive class, where accuracy focuses
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Table 5. Performance of EM using different numbers of mixture components for thenegative class and 7000
unlabeled documents. Precision-recall breakeven points are shown for experiments using between one and forty
mixture components. Note that using too few or too many mixture components results in poor performance.

Category EM1 EM3 EM5 EM10 EM20 EM40

acq 70.7 75.0 72.5 77.1 68.7 57.5

corn 44.6 45.3 45.3 46.7 41.8 19.1

crude 68.2 72.1 70.9 71.6 64.2 44.0

earn 89.2 88.3 88.5 86.5 87.4 87.2

grain 67.0 68.8 70.3 68.0 58.5 41.3

interest 36.8 43.5 47.1 49.9 34.8 25.8

money-fx 40.3 48.4 53.4 54.3 51.4 40.1

ship 34.1 41.5 42.3 36.1 21.0 5.4

trade 56.1 54.4 55.8 53.4 35.8 27.5

wheat 52.9 56.0 55.5 60.8 60.8 43.4

Table 6. Performance of EM using different numbers of mixture components for thenegative class, but with no
unlabeled data. Precision-recall breakeven points are shown for experiments using between one and forty mixture
components.

Category NB1 NB3 NB5 NB10 NB20 NB40

acq 69.4 69.4 65.8 68.0 64.6 68.8

corn 44.3 44.3 46.0 41.8 41.1 38.9

crude 65.2 60.2 63.1 64.4 65.8 61.8

earn 91.1 90.9 90.5 90.5 90.5 90.4

grain 65.7 63.9 56.7 60.3 56.2 57.5

interest 44.4 48.8 52.6 48.9 47.2 47.6

money-fx 49.4 48.1 47.5 47.1 48.8 50.4

ship 44.3 42.7 47.1 46.0 43.6 45.6

trade 57.7 57.5 51.9 53.2 52.3 58.1

wheat 56.0 59.7 55.7 65.0 63.2 56.0

more on modeling thenegative class, because it is much more frequent. By allowing more
mixture components for thenegative class, a more accurate model is achieved.

One obvious question is how to select the best number of mixture components without
having access to the test set labels. As with selection of the weighting factor,λ, we use
leave-one-out cross-validation, with the computational short-cut that entails running EM
only once (as described at the end of Section 6.1).

Results from this technique (EM*CV), compared to naive Bayes (NB1) and the best
EM (EM*), are shown in Table 8. Note that cross-validation does not perfectly select the
number of components that perform best on the test set. The results consistently show
that selection by cross-validation chooses a smaller number of components than is best.
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Table 7. Classification accuracy onReuters with traditional naive Bayes (NB1), multiple mixture components
using just labeled data (NB*), basic EM (EM1) with labeled and unlabeled data, and multiple mixture components
EM with labeled and unlabeled data (EM*), as in Table 4.

Category NB1 NB* EM1 EM* EM* vs. NB1 EM* vs. NB*

acq 86.9 88.0 (4) 81.3 93.1 (10) +6.2 +5.1

corn 94.6 96.0 (10) 93.2 97.2 (40) +2.6 +1.2

crude 94.3 95.7 (13) 94.9 96.3 (10) +2.0 +0.6

earn 94.9 95.9 (5) 95.2 95.7 (10) +0.8 −0.2

grain 94.1 96.2 (3) 93.6 96.9 (20) +2.8 +0.7

interest 91.8 95.3 (5) 87.6 95.8 (10) +4.0 +0.5

money-fx 93.0 94.1 (5) 90.4 95.0 (15) +2.0 +0.9

ship 94.9 96.3 (3) 94.1 95.9 (3) +1.0 −0.4

trade 91.8 94.3 (5) 90.2 95.0 (20) +3.2 +0.7

wheat 94.0 96.2 (4) 94.5 97.8 (40) +3.8 +1.6

Table 8. Performance of using multiple mixture components when the number of components is selected via
cross-validation (EM*CV) compared to optimal selection (EM*) and straight naive Bayes (NB1). Note that cross-
validation usually selects too few components.

Category NB1 EM* EM*CV EM*CV vs. NB1

acq 69.4 83.9 (10) 75.6 (1) +6.2

corn 44.3 52.8 (5) 47.1 (3) +2.8

crude 65.2 75.4 (8) 68.3 (1) +3.1

earn 91.1 89.2 (1) 87.1 (1) −4.0

grain 65.7 72.3 (8) 67.2 (1) +1.5

interest 44.4 52.3 (5) 42.6 (3) −1.8

money-fx 49.4 56.9 (10) 47.4 (2) −2.0

ship 44.3 52.5 (7) 41.3 (2) −3.0

trade 57.7 61.8 (3) 57.3 (1) −0.4

wheat 56.0 67.8 (10) 56.9 (1) +0.9

By using the cross-validation with the computational short-cut, we bias the model towards
the held-out document, which, we hypothesize, favors the use of fewer components. The
computationally expensive, but complete, cross-validation should perform better.

Other model selection methods may perform better, while also remaining computationally
efficient. These include: more robust methods of cross-validation, such as that of Ng (1997);
Minimum Description Length (Rissanen, 1983); and Schuurman’s metric-based approach,
which also uses unlabeled data (1997). Research on improved methods of model selection
for our algorithm is an area of future work.
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7. Related work

Expectation-Maximization is a well-known family of algorithms with a long history and
many applications. Its application to classification is not new in the statistics literature. The
idea of using an EM-like procedure to improve a classifier by “treating the unclassified data
as incomplete” is mentioned by R. J. A. Little among the published responses to the original
EM paper (Dempster, Laird, & Rubin, 1977). A discussion of this “partial classification”
paradigm and descriptions of further references can be found in McLachlan and Basford’s
book on mixture models (1988, page 29).

Two recent studies in the machine learning literature have used EM to combine labeled
and unlabeled data for classification (Miller & Uyar, 1997; Shahshahani & Landgrebe,
1994). Instead of naive Bayes, Shahshahani and Landgrebe use a mixture of Gaussians;
Miller and Uyar use Mixtures of Experts. They demonstrate experimental results on non-
text data sets with up to 40 features. In contrast, our textual data sets have three orders of
magnitude more features, which, we hypothesize, exacerbate violations of the independence
and mixture model assumptions.

Shahshahani and Landgrebe (1994) also theoretically investigate the utility of unlabeled
data in supervised learning, with quite different results. They analyze the convergence rate
under the assumption that unbiased estimators are available forθ , for both the labeled and
the unlabeled data. Their bounds, which are based on Fisher information gain, show a linear
(instead of exponential) value of labeled versus unlabeled data. Unfortunately, their analysis
assumes that unlabeled data alone is sufficient to estimate both parameter vectors; thus, they
assume that the target concept can be recovered without any target labels. This assumption
is unrealistic. As shown by Castelli and Cover (1995), unlabeled data does not improve the
classification results in the absence of labeled data.

Our work is an example of applying EM to fill in missing values—the missing values are
the class labels of the unlabeled training examples. Work by Ghahramani and Jordan (1994)
is another example in the machine learning literature of using EM with mixture models to
fill in missing values. Whereas we focus on data where the class labels are missing, they
focus on data where features other than the class labels are missing. The AutoClass project
(Cheeseman & Stutz, 1996) investigates the combination of Expectation-Maximization with
a naive Bayes generative model. The emphasis of their research is the discovery of novel
clustering for unsupervised learning over unlabeled data.

Our use of multiple mixture components per class is an example of using mixtures to
improve modeling of probability density functions. Jaakkola and Jordan (1998) provide a
general discussion of using mixtures to improve mean field approximations (of which naive
Bayes is an example).

Another paradigm that reduces the need for labeled training examples is active learning.
In this scenario, the algorithm repeatedly selects an unlabeled example, asks a human labeler
for its true class label, and rebuilds its classifier. Active learning algorithms differ in their
methods of selecting the unlabeled example. Three such examples applied to text are “Query
By Committee” (Dagan & Engelson, 1995; Liere & Tadepalli, 1997), relevance sampling
and uncertainty sampling (Lewis & Gale, 1994; Lewis, 1995).

Recent work by some of the authors combines active learning with Expectation-
Maximization (McCallum & Nigam, 1998). EM is applied to the unlabeled documents
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both to help inform the algorithm’s choice of documents for labeling requests, and also to
boost accuracy using the documents that remain unlabeled (as in this paper). Experimental
results show that the combination of active learning and EM requires only slightly more
than half as many labeled training examples to achieve the same accuracy as either active
learning or EM alone.

Another effort to use unlabeled data in support of supervised learning is the work on
co-training by Blum and Mitchell (1998). They consider a particular subclass of learning
problems distinct from the problems addressed in this paper. In particular, they consider
problems where a target functionf (x) is to be learned, and where the attributes describing
each instancex can be partitioned into two sets such that each is sufficient to calculate
f . This redundancy in the attributes describingx allows learning two distinct classifiers,
then using them to train one another over unlabeled data. They present experimental results
showing the success of this approach on a web page classification task, as well as a proof
that under certain conditions the target function can be PAC learned given an initial weak
classifier and unlabeled data only.

A variety of statistical techniques other than naive Bayes have been applied to text clas-
sification, including Support Vector Machines (Joachims, 1998),k nearest neighbor (Yang,
1994, 1999), TFIDF/Rocchio (Salton, 1991; Rocchio 1971), exponential gradient and cov-
ering algorithms (Cohen & Singer, 1996). We use naive Bayes in this paper because is has
a strong probabilistic foundation for Expectation-Maximization, and is more efficient for
large data sets. Furthermore, the thrust of this paper is to straightforwardly demonstrate the
value of unlabeled data; a similar approach could apply unlabeled data to more complex
classifiers.

8. Summary and conclusions

This paper has presented a family of algorithms that address the question of when and how
unlabeled data may be used to supplement scarce labeled data, especially when learning to
classify text documents. This is an important question in text learning, because of the high
cost of hand-labeling data and because of the availability of large volumes of unlabeled
data. We have presented an algorithm that takes advantage of it and experimental results
that show significant improvements by using unlabeled documents for training classifiers
in three real-world text classification tasks.

When our assumptions of data generation are correct, basic EM can effectively incor-
porate information from unlabeled data. However, the full complexity of real-world text
data cannot be completely captured by known statistical models. It is interesting then, to
consider the performance of a classifier based on generative models that make incorrect
assumptions about the data. In such cases, when the data is inconsistent with the assump-
tions of the model, our method for adjusting the relative contribution of the unlabeled data
(EM-λ) prevents the unlabeled data from degrading classification accuracy.

In another augmentation to the basic EM scheme, we study the effect of multiple mixture
components per class. This is an effort to relax the assumptions of the model, and make
the generative model better match the data. Experimental results show improvements in
classification, and suggest the exploration of even more complex mixture models that would
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correspond even better to textual data distributions. These results also recommend a study
of improvements to the current cross-validation methods for selecting both the unlabeled
data weightλ and the number of mixture components per class.

We believe that our algorithm and others using unlabeled data require a closer match
between the data and the generative model than those using labeled data alone. If the intended
target concept and model differ from the actual distribution of the data too strongly, then
the use of unlabeled data will hurt instead of help performance. In future work we intend to
make a closer theoretical and empirical study of the tradeoffs between the use of unlabeled
data and inherent model inadequacies.

We also see several other interesting directions for future work with unlabeled data. Two
other task formulations could also benefit from using EM: (1) active learning could use an
explicit model of unlabeled data and incorporate EM, both to improve selection of examples
for which to request a label and to improve classification accuracy using the examples that
remain unlabeled at the end; initial study in this area has already begun (McCallum &
Nigam, 1998); (2) an incremental learning algorithm that re-trains throughout the testing
phase could use the unlabeled test data received early in the testing phase in order to improve
performance on the later test data.

Furthermore, other problem domains share some similarities with text domains, and also
have limited, expensive labeled data, but abundant and inexpensive unlabeled data. Robotics,
vision, and information extraction are three such domains. Applying the techniques in this
paper could improve performance in these areas as well.
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Notes

1. This assumption will be relaxed in Section 5.3.2 by making this a many-to-one correspondence. Other work
(Li & Yamanishi, 1997) relaxes this assumption in a one-to-many fashion.

2. Throughout the paper we use standard notational shorthand for random variables, whereby P(X = xi |Y = yj )

is written P(xi | yj ) for random variablesX andY taking on valuesxi andyj .
3. Previous naive Bayes formalizations do not include this document length effect. In the most general case,

document length should be modeled and parameterized on a class-by-class basis.
4. The Dirichlet is a commonly-used conjugate prior distribution over multinomials. Dirichlet distributions are

discussed in more detail by, for example, Stolcke and Omohundro (1994).
5. All three of these data sets are available on the Internet. See http://www.cs.cmu.edu/∼textlearning and

http://www.research.att.com/∼lewis.
6. For all statistical results in this paper, when the number of labeled examples is small, we have multiple trials,

and use paired t-tests. When the number of labeled examples is large, we have a single trial, and report results
instead with a McNemar test. These tests are discussed further by Dietterich (1988).
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7. The weighted log likelihood ratio used to rank the words in figure 3 is:

P(wt | cj ; θ̂ ) log

(
P(wt | cj ; θ̂ )

P(wt | ¬cj ; θ̂ )

)
, (18)

which can be understood in information-theoretic terms as wordwt ’s contribution to the average inefficiency
of encoding words from classcj using a code that is optimal for the distribution of words in¬cj . The sum of
this quantity over all words is the Kullback-Leibler divergence between the distribution of words incj and the
distribution of words in¬cj (Cover & Thomas, 1991).
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