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Abstract

Support vector machines have met with significant success in numerous real-world learning
tasks. However, like most machine learning algorithms, they are generally applied using
a randomly selected training set classified in advance. In many settings, we also have the
option of using pool-based active learning. Instead of using a randomly selected training
set, the learner has access to a pool of unlabeled instances and can request the labels for
some number of them. We introduce a new algorithm for performing active learning with
support vector machines, i.e., an algorithm for choosing which instances to request next.
We provide a theoretical motivation for the algorithm using the notion of a version space.
We present experimental results showing that employing our active learning method can
significantly reduce the need for labeled training instances in both the standard inductive
and transductive settings.
Keywords: Active Learning, Selective Sampling, Support Vector Machines, Classifica-
tion, Relevance Feedback

1. Introduction

In many supervised learning tasks, labeling instances to create a training set is time-
consuming and costly; thus, finding ways to minimize the number of labeled instances
is beneficial. Usually, the training set is chosen to be a random sampling of instances. How-
ever, in many cases active learning can be employed. Here, the learner can actively choose
the training data. It is hoped that allowing the learner this extra flexibility will reduce the
learner’s need for large quantities of labeled data.

Pool-based active learning for classification was introduced by Lewis and Gale (1994).
The learner has access to a pool of unlabeled data and can request the true class label for
a certain number of instances in the pool. In many domains this is a reasonable approach
since a large quantity of unlabeled data is readily available. The main issue with active
learning is finding a way to choose good requests or queries from the pool.

Examples of situations in which pool-based active learning can be employed are:

• Web searching. A Web-based company wishes to search the web for particular types
of pages (e.g., pages containing lists of journal publications). It employs a number of
people to hand-label some web pages so as to create a training set for an automatic
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classifier that will eventually be used to classify the rest of the web. Since human
expertise is a limited resource, the company wishes to reduce the number of pages
the employees have to label. Rather than labeling pages randomly drawn from the
web, the computer requests targeted pages that it believes will be most informative
to label.

• Email filtering. The user wishes to create a personalized automatic junk email filter.
In the learning phase the automatic learner has access to the user’s past email files.
It interactively brings up past email and asks the user whether the displayed email is
junk mail or not. Based on the user’s answer it brings up another email and queries
the user. The process is repeated some number of times and the result is an email
filter tailored to that specific person.

• Relevance feedback. The user wishes to sort through a database or website for
items (images, articles, etc.) that are of personal interest—an “I’ll know it when I
see it” type of search. The computer displays an item and the user tells the learner
whether the item is interesting or not. Based on the user’s answer, the learner brings
up another item from the database. After some number of queries the learner then
returns a number of items in the database that it believes will be of interest to the
user.

The first two examples involve induction. The goal is to create a classifier that works
well on unseen future instances. The third example is an example of transduction(Vapnik,
1998). The learner’s performance is assessed on the remaining instances in the database
rather than a totally independent test set.

We present a new algorithm that performs pool-based active learning with support
vector machines (SVMs). We provide theoretical motivations for our approach to choosing
the queries, together with experimental results showing that active learning with SVMs can
significantly reduce the need for labeled training instances.

We shall use text classification as a running example throughout this paper. This is
the task of determining to which pre-defined topic a given text document belongs. Text
classification has an important role to play, especially with the recent explosion of readily
available text data. There have been many approaches to achieve this goal (Rocchio, 1971,
Dumais et al., 1998, Sebastiani, 2001). Furthermore, it is also a domain in which SVMs
have shown notable success (Joachims, 1998, Dumais et al., 1998) and it is of interest to
see whether active learning can offer further improvement over this already highly effective
method.

The remainder of the paper is structured as follows. Section 2 discusses the use of
SVMs both in terms of induction and transduction. Section 3 then introduces the notion
of a version space and Section 4 provides theoretical motivation for three methods for
performing active learning with SVMs. In Section 5 we present experimental results for
two real-world text domains that indicate that active learning can significantly reduce the
need for labeled instances in practice. We conclude in Section 7 with some discussion of the
potential significance of our results and some directions for future work.
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(a) (b)

Figure 1: (a) A simple linear support vector machine. (b) A SVM (dotted line) and a
transductive SVM (solid line). Solid circles represent unlabeled instances.

2. Support Vector Machines

Support vector machines (Vapnik, 1982) have strong theoretical foundations and excellent
empirical successes. They have been applied to tasks such as handwritten digit recognition,
object recognition, and text classification.

2.1 SVMs for Induction

We shall consider SVMs in the binary classification setting. We are given training data
{x1 . . .xn} that are vectors in some space X ⊆ Rd. We are also given their labels {y1 . . . yn}
where yi ∈ {−1, 1}. In their simplest form, SVMs are hyperplanes that separate the training
data by a maximal margin (see Fig. 1a) . All vectors lying on one side of the hyperplane
are labeled as −1, and all vectors lying on the other side are labeled as 1. The training
instances that lie closest to the hyperplane are called support vectors. More generally, SVMs
allow one to project the original training data in space X to a higher dimensional feature
space F via a Mercer kernel operator K. In other words, we consider the set of classifiers
of the form:

f(x) =

(
n∑

i=1

αiK(xi,x)

)
. (1)

When K satisfies Mercer’s condition (Burges, 1998) we can write: K(u,v) = Φ(u) · Φ(v)
where Φ : X → F and “·” denotes an inner product. We can then rewrite f as:

f(x) = w · Φ(x), where w =
n∑

i=1

αiΦ(xi). (2)

Thus, by using K we are implicitly projecting the training data into a different (often
higher dimensional) feature space F . The SVM then computes the αis that correspond
to the maximal margin hyperplane in F . By choosing different kernel functions we can
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implicitly project the training data from X into spaces F for which hyperplanes in F
correspond to more complex decision boundaries in the original space X .

Two commonly used kernels are the polynomial kernel given by K(u,v) = (u · v + 1)p

which induces polynomial boundaries of degree p in the original space X 1 and the radial basis
function kernel K(u,v) = (e−γ(u−v)·(u−v)) which induces boundaries by placing weighted
Gaussians upon key training instances. For the majority of this paper we will assume that
the modulus of the training data feature vectors are constant, i.e., for all training instances
xi, ‖Φ(xi)‖ = λ for some fixed λ. The quantity ‖Φ(xi)‖ is always constant for radial basis
function kernels, and so the assumption has no effect for this kernel. For ‖Φ(xi)‖ to be
constant with the polynomial kernels we require that ‖xi‖ be constant. It is possible to
relax this constraint on Φ(xi) and we shall discuss this at the end of Section 4.

2.2 SVMs for Transduction

The previous subsection worked within the framework of induction. There was a labeled
training set of data and the task was to create a classifier that would have good performance
on unseen test data. In addition to regular induction, SVMs can also be used for transduc-
tion. Here we are first given a set of both labeled and unlabeled data. The learning task is
to assign labels to the unlabeled data as accurately as possible. SVMs can perform trans-
duction by finding the hyperplane that maximizes the margin relative to both the labeled
and unlabeled data. See Figure 1b for an example. Recently, transductive SVMs (TSVMs)
have been used for text classification (Joachims, 1999b), attaining some improvements in
precision/recall breakeven performance over regular inductive SVMs.

3. Version Space

Given a set of labeled training data and a Mercer kernel K, there is a set of hyperplanes that
separate the data in the induced feature space F . We call this set of consistent hypotheses
the version space (Mitchell, 1982). In other words, hypothesis f is in version space if for
every training instance xi with label yi we have that f(xi) > 0 if yi = 1 and f(xi) < 0 if
yi = −1. More formally:

Definition 1 Our set of possible hypotheses is given as:

H =
{

f | f(x) =
w · Φ(x)
‖w‖ where w ∈ W

}
,

where our parameter space W is simply equal to F . The version space, V is then defined
as:

V = {f ∈ H | ∀i ∈ {1 . . . n} yif(xi) > 0}.
Notice that since H is a set of hyperplanes, there is a bijection between unit vectors w and
hypotheses f in H. Thus we will redefine V as:

V = {w ∈ W | ‖w‖ = 1, yi(w · Φ(xi)) > 0, i = 1 . . . n}.
1. We have not introduced a bias weight in Eq. (2). Thus, the simple Euclidean inner product will produce

hyperplanes that pass through the origin. However, a polynomial kernel of degree one induces hyperplanes
that do not need to pass through the origin.
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(a) (b)

Figure 2: (a) Version space duality. The surface of the hypersphere represents unit weight
vectors. Each of the two hyperplanes corresponds to a labeled training instance.
Each hyperplane restricts the area on the hypersphere in which consistent hy-
potheses can lie. Here, the version space is the surface segment of the hypersphere
closest to the camera. (b) An SVM classifier in a version space. The dark em-
bedded sphere is the largest radius sphere whose center lies in the version space
and whose surface does not intersect with the hyperplanes. The center of the em-
bedded sphere corresponds to the SVM, its radius is proportional to the margin
of the SVM in F , and the training points corresponding to the hyperplanes that
it touches are the support vectors.

Note that a version space only exists if the training data are linearly separable in the
feature space. Thus, we require linear separability of the training data in the feature space.
This restriction is much less harsh than it might at first seem. First, the feature space often
has a very high dimension and so in many cases it results in the data set being linearly
separable. Second, as noted by Shawe-Taylor and Cristianini (1999), it is possible to modify
any kernel so that the data in the new induced feature space is linearly separable2.

There exists a duality between the feature space F and the parameter space W (Vapnik,
1998, Herbrich et al., 2001) which we shall take advantage of in the next section: points in
F correspond to hyperplanes in W and vice versa.

By definition, points in W correspond to hyperplanes in F . The intuition behind the
converse is that observing a training instance xi in the feature space restricts the set of
separating hyperplanes to ones that classify xi correctly. In fact, we can show that the set

2. This is done by redefining for all training instances xi: K(xi,xi) ← K(xi,xi) + ν where ν is a positive
regularization constant. This essentially achieves the same effect as the soft margin error function (Cortes
and Vapnik, 1995) commonly used in SVMs. It permits the training data to be linearly non-separable
in the original feature space.
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of allowable points w in W is restricted to lie on one side of a hyperplane in W. More
formally, to show that points in F correspond to hyperplanes in W, suppose we are given
a new training instance xi with label yi. Then any separating hyperplane must satisfy
yi(w · Φ(xi)) > 0. Now, instead of viewing w as the normal vector of a hyperplane in F ,
think of Φ(xi) as being the normal vector of a hyperplane in W. Thus yi(w · Φ(xi)) > 0
defines a half space in W. Furthermore w · Φ(xi) = 0 defines a hyperplane in W that acts
as one of the boundaries to version space V. Notice that the version space is a connected
region on the surface of a hypersphere in parameter space. See Figure 2a for an example.

SVMs find the hyperplane that maximizes the margin in the feature space F . One way
to pose this optimization task is as follows:

maximizew∈F mini{yi(w · Φ(xi))}
subject to: ‖w‖ = 1

yi(w · Φ(xi)) > 0 i = 1 . . . n.

By having the conditions ‖w‖ = 1 and yi(w · Φ(xi)) > 0 we cause the solution to lie in the
version space. Now, we can view the above problem as finding the point w in the version
space that maximizes the distance: mini{yi(w · Φ(xi))}. From the duality between feature
and parameter space, and since ‖Φ(xi)‖ = λ , each Φ(xi)/λ is a unit normal vector of a
hyperplane in parameter space. Because of the constraints yi(w · Φ(xi)) > 0 i = 1 . . . n
each of these hyperplanes delimit the version space. The expression yi(w · Φ(xi)) can be
regarded as:

λ × the distance between the point w and the hyperplane with normal vector Φ(xi).

Thus, we want to find the point w∗ in the version space that maximizes the minimum
distance to any of the delineating hyperplanes. That is, SVMs find the center of the largest
radius hypersphere whose center can be placed in the version space and whose surface does
not intersect with the hyperplanes corresponding to the labeled instances, as in Figure 2b.

The normals of the hyperplanes that are touched by the maximal radius hypersphere are
the Φ(xi) for which the distance yi(w∗ · Φ(xi)) is minimal. Now, taking the original rather
than the dual view, and regarding w∗ as the unit normal vector of the SVM and Φ(xi) as
points in feature space, we see that the hyperplanes that are touched by the maximal radius
hypersphere correspond to the support vectors (i.e., the labeled points that are closest to
the SVM hyperplane boundary).

The radius of the sphere is the distance from the center of the sphere to one of the
touching hyperplanes and is given by yi(w∗ · Φ(xi)/λ) where Φ(xi) is a support vector.
Now, viewing w∗ as a unit normal vector of the SVM and Φ(xi) as points in feature space,
we have that the distance yi(w∗ · Φ(xi)/λ) is:

1
λ
× the distance between support vector Φ(xi) and the hyperplane with normal vector w,

which is the margin of the SVM divided by λ. Thus, the radius of the sphere is proportional
to the margin of the SVM.
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4. Active Learning

In pool-based active learning we have a pool of unlabeled instances. It is assumed that
the instances x are independently and identically distributed according to some underlying
distribution F (x) and the labels are distributed according to some conditional distribution
P (y | x).

Given an unlabeled pool U , an active learner � has three components: (f, q, X). The
first component is a classifier, f : X → {−1, 1}, trained on the current set of labeled data X
(and possibly unlabeled instances in U too). The second component q(X) is the querying
function that, given a current labeled set X, decides which instance in U to query next.
The active learner can return a classifier f after each query (online learning) or after some
fixed number of queries.

The main difference between an active learner and a passive learner is the querying
component q. This brings us to the issue of how to choose the next unlabeled instance to
query. Similar to Seung et al. (1992), we use an approach that queries points so as to attempt
to reduce the size of the version space as much as possible. We take a myopic approach
that greedily chooses the next query based on this criterion. We also note that myopia is a
standard approximation used in sequential decision making problems Horvitz and Rutledge
(1991), Latombe (1991), Heckerman et al. (1994). We need two more definitions before we
can proceed:

Definition 2 Area(V) is the surface area that the version space V occupies on the hyper-
sphere ‖w‖ = 1.

Definition 3 Given an active learner �, let Vi denote the version space of � after i queries
have been made. Now, given the (i + 1)th query xi+1, define:

V−
i = Vi ∩ {w ∈ W | −(w · Φ(xi+1)) > 0},

V+
i = Vi ∩ {w ∈ W | +(w · Φ(xi+1)) > 0}.

So V−
i and V+

i denote the resulting version spaces when the next query xi+1 is labeled as
−1 and 1 respectively.

We wish to reduce the version space as fast as possible. Intuitively, one good way of
doing this is to choose a query that halves the version space. The follow lemma says that,
for any given number of queries, the learner that chooses successive queries that halves
the version spaces is the learner that minimizes the maximum expected size of the version
space, where the maximum is taken over all conditional distributions of y given x:
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Lemma 4 Suppose we have an input space X , finite dimensional feature space F (induced
via a kernel K), and parameter space W. Suppose active learner �∗ always queries instances
whose corresponding hyperplanes in parameter space W halves the area of the current version
space. Let � be any other active learner. Denote the version spaces of �∗ and � after i queries
as V∗

i and Vi respectively. Let P denote the set of all conditional distributions of y given x.
Then,

∀i ∈ N+ sup
P∈P

EP [Area(V∗
i )] ≤ sup

P∈P
EP [Area(Vi)],

with strict inequality whenever there exists a query j ∈ {1 . . . i} by � that does not halve
version space Vj−1.

Proof. The proof is straightforward. The learner, �∗ always chooses to query instances
that halve the version space. Thus Area(V∗

i+1) = 1
2Area(V∗

i ) no matter what the labeling
of the query points are. Let r denote the dimension of feature space F . Then r is also the
dimension of the parameter space W. Let Sr denote the surface area of the unit hypersphere
of dimension r. Then, under any conditional distribution P , Area(V∗

i ) = Sr/2i.
Now, suppose � does not always query an instance that halves the area of the version

space. Then after some number, k, of queries � first chooses to query a point xk+1 that
does not halve the current version space Vk. Let yk+1 ∈ {−1, 1} correspond to the labeling
of xk+1 that will cause the larger half of the version space to be chosen.

Without loss of generality assume Area(V−
k ) > Area(V+

k ) and so yk+1 = −1. Note that
Area(V−

k ) + Area(V+
k ) = Sr/2k, so we have that Area(V−

k ) > Sr/2k+1.
Now consider the conditional distribution P0:

P0(−1 | x) =
{

1
2 if x �= xk+1

1 if x = xk+1
.

Then under this distribution, ∀i > k,

EP0 [Area(Vi)] =
1

2i−k−1
Area(V−

k ) >
Sr

2i
.

Hence, ∀i > k,
sup
P∈P

EP [Area(V∗
i )] > sup

P∈P
EP [Area(Vi)].

✷

Now, suppose w∗ ∈ W is the unit parameter vector corresponding to the SVM that we
would have obtained had we known the actual labels of all of the data in the pool. We
know that w∗ must lie in each of the version spaces V1 ⊃ V2 ⊃ V3 . . ., where Vi denotes the
version space after i queries. Thus, by shrinking the size of the version space as much as
possible with each query, we are reducing as fast as possible the space in which w∗ can lie.
Hence, the SVM that we learn from our limited number of queries will lie close to w∗.

If one is willing to assume that there is a hypothesis lying within H that generates the
data and that the generating hypothesis is deterministic and that the data are noise free,
then strong generalization performance properties of an algorithm that halves version space
can also be shown (Freund et al., 1997). For example one can show that the generalization
error decreases exponentially with the number of queries.
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(a) (b)

Figure 3: (a) Simple Margin will query b. (b) Simple Margin will query a.

(a) (b)

Figure 4: (a) MaxMin Margin will query b. The two SVMs with margins m− and m+ for b
are shown. (b) Ratio Margin will query e. The two SVMs with margins m− and
m+ for e are shown.

This discussion provides motivation for an approach where we query instances that split
the current version space into two equal parts as much as possible. Given an unlabeled
instance x from the pool, it is not practical to explicitly compute the sizes of the new
version spaces V− and V+ (i.e., the version spaces obtained when x is labeled as −1 and
+1 respectively). We next present three ways of approximating this procedure.

• Simple Margin. Recall from section 3 that, given some data {x1 . . .xi} and labels
{y1 . . . yi}, the SVM unit vector wi obtained from this data is the center of the largest
hypersphere that can fit inside the current version space Vi. The position of wi in
the version space Vi clearly depends on the shape of the region Vi, however it is
often approximately in the center of the version space. Now, we can test each of the
unlabeled instances x in the pool to see how close their corresponding hyperplanes
in W come to the centrally placed wi. The closer a hyperplane in W is to the point
wi, the more centrally it is placed in the version space, and the more it bisects the
version space. Thus we can pick the unlabeled instance in the pool whose hyperplane
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in W comes closest to the vector wi. For each unlabeled instance x, the shortest
distance between its hyperplane in W and the vector wi is simply the distance between
the feature vector Φ(x) and the hyperplane wi in F—which is easily computed by
|wi · Φ(x)|. This results in the natural rule: learn an SVM on the existing labeled
data and choose as the next instance to query the instance that comes closest to the
hyperplane in F .

Figure 3a presents an illustration. In the stylized picture we have flattened out the
surface of the unit weight vector hypersphere that appears in Figure 2a. The white
area is version space Vi which is bounded by solid lines corresponding to labeled
instances. The five dotted lines represent unlabeled instances in the pool. The circle
represents the largest radius hypersphere that can fit in the version space. Note that
the edges of the circle do not touch the solid lines—just as the dark sphere in 2b
does not meet the hyperplanes on the surface of the larger hypersphere (they meet
somewhere under the surface). The instance b is closest to the SVM wi and so we
will choose to query b.

• MaxMin Margin. The Simple Margin method can be a rather rough approximation.
It relies on the assumption that the version space is fairly symmetric and that wi is
centrally placed. It has been demonstrated, both in theory and practice, that these
assumptions can fail significantly (Herbrich et al., 2001). Indeed, if we are not careful
we may actually query an instance whose hyperplane does not even intersect the
version space. The MaxMin approximation is designed to overcome these problems to
some degree. Given some data {x1 . . .xi} and labels {y1 . . . yi}, the SVM unit vector
wi is the center of the largest hypersphere that can fit inside the current version
space Vi and the radius mi of the hypersphere is proportional3 to the size of the
margin of wi. We can use the radius mi as an indication of the size of the version
space (Vapnik, 1998). Suppose we have a candidate unlabeled instance x in the pool.
We can estimate the relative size of the resulting version space V− by labeling x as −1,
finding the SVM obtained from adding x to our labeled training data and looking at
the size of its margin m−. We can perform a similar calculation for V+ by relabeling
x as class +1 and finding the resulting SVM to obtain margin m+.

Since we want an equal split of the version space, we wish Area(V−) and Area(V+) to
be similar. Now, consider min(Area(V−),Area(V+)). It will be small if Area(V−) and
Area(V+) are very different. Thus we will consider min(m−, m+) as an approximation
and we will choose to query the x for which this quantity is largest. Hence, the MaxMin
query algorithm is as follows: for each unlabeled instance x compute the margins m−

and m+ of the SVMs obtained when we label x as −1 and +1 respectively; then choose
to query the unlabeled instance for which the quantity min(m−, m+) is greatest.

Figures 3b and 4a show an example comparing the Simple Margin and MaxMin Margin
methods.

• Ratio Margin. This method is similar in spirit to the MaxMin Margin method. We
use m− and m+ as indications of the sizes of V− and V+. However, we shall try to

3. To ease notation, without loss of generality we shall assume the the constant of proportionality is 1, i.e.,
the radius is equal to the margin.
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take into account the fact that the current version space Vi may be quite elongated
and for some x in the pool both m− and m+ may be small simply because of the shape
of version space. Thus we will instead look at the relative sizes of m− and m+ and
choose to query the x for which min(m−

m+ , m+

m− ) is largest (see Figure 4b).

The above three methods are approximations to the querying component that always
halves version space. After performing some number of queries we then return a classifier
by learning a SVM with the labeled instances.

The margin can be used as an indication of the version space size irrespective of whether
the feature vectors have constant modulus. Thus the explanation for the MaxMin and Ratio
methods still holds even without the constraint on the modulus of the training feature
vectors. The Simple method can still be used when the training feature vectors do not
have constant modulus, but the motivating explanation no longer holds since the maximal
margin hyperplane can no longer be viewed as the center of the largest allowable sphere.
However, for the Simple method, alternative motivations have recently been proposed by
Campbell et al. (2000) that do not require the constraint on the modulus.

For inductive learning, after performing some number of queries we then return a classi-
fier by learning a SVM with the labeled instances. For transductive learning, after querying
some number of instances we then return a classifier by learning a transductive SVM with
the labeled and unlabeled instances.

5. Experiments

For our empirical evaluation of the above methods we used two real-world text classification
domains: the Reuters-21578 data set and the Newsgroups data set.

5.1 Reuters Data Collection Experiments

The Reuters-21578 data set4 is a commonly used collection of newswire stories categorized
into hand-labeled topics. Each news story has been hand-labeled with some number of topic
labels such as “corn”, “wheat” and “corporate acquisitions”. Note that some of the topics
overlap and so some articles belong to more than one category. We used the 12902 articles
from the “ModApte” split of the data5 and, to stay comparable with previous studies, we
considered the top ten most frequently occurring topics. We learned ten different binary
classifiers, one to distinguish each topic. Each document was represented as a stemmed,
TFIDF-weighted word frequency vector.6 Each vector had unit modulus. A stop list of
common words was used and words occurring in fewer than three documents were also
ignored. Using this representation, the document vectors had about 10000 dimensions.

We first compared the three querying methods in the inductive learning setting. Our
test set consisted of the 3299 documents present in the “ModApte” test set.

4. Obtained from www.research.att.com/˜lewis.
5. The Reuters-21578 collection comes with a set of predefined training and test set splits. The commonly

used“ModApte” split filters out duplicate articles and those without a labeled topic, and then uses earlier
articles as the training set and later articles as the test set.

6. We used Rainbow (McCallum, 1996) for text processing.
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Figure 5: (a) Average test set accuracy over the ten most frequently occurring topics when
using a pool size of 1000. (b) Average test set precision/recall breakeven point
over the ten most frequently occurring topics when using a pool size of 1000.

Topic Simple MaxMin Ratio Equivalent
Random size

Earn 86.39 ± 1.65 87.75 ± 1.40 90.24 ± 2.31 34
Acq 77.04 ± 1.17 77.08 ± 2.00 80.42 ± 1.50 > 100
Money-fx 93.82 ± 0.35 94.80± 0.14 94.83± 0.13 50
Grain 95.53 ± 0.09 95.29 ± 0.38 95.55 ± 1.22 13
Crude 95.26 ± 0.38 95.26 ± 0.15 95.35 ± 0.21 > 100
Trade 96.31 ± 0.28 96.64 ± 0.10 96.60 ± 0.15 > 100
Interest 96.15 ± 0.21 96.55 ± 0.09 96.43 ± 0.09 > 100
Ship 97.75 ± 0.11 97.81 ± 0.09 97.66 ± 0.12 > 100
Wheat 98.10 ± 0.24 98.48 ± 0.09 98.13 ± 0.20 > 100
Corn 98.31 ± 0.19 98.56 ± 0.05 98.30 ± 0.19 15

Table 1: Average test set accuracy over the top ten most frequently occurring topics (most
frequent topic first) when trained with ten labeled documents. Boldface indicates
statistical significance.

For each of the ten topics we performed the following steps. We created a pool of
unlabeled data by sampling 1000 documents from the remaining data and removing their
labels. We then randomly selected two documents in the pool to give as the initial labeled
training set. One document was about the desired topic, and the other document was
not about the topic. Thus we gave each learner 998 unlabeled documents and 2 labeled
documents. After a fixed number of queries we asked each learner to return a classifier (an
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Topic Simple MaxMin Ratio Equivalent
Random size

Earn 86.05 ± 0.61 89.03± 0.53 88.95± 0.74 12
Acq 54.14 ± 1.31 56.43 ± 1.40 57.25 ± 1.61 12
Money-fx 35.62 ± 2.34 38.83 ± 2.78 38.27 ± 2.44 52
Grain 50.25 ± 2.72 58.19± 2.04 60.34± 1.61 51
Crude 58.22 ± 3.15 55.52 ± 2.42 58.41 ± 2.39 55
Trade 50.71 ± 2.61 48.78 ± 2.61 50.57 ± 1.95 85
Interest 40.61 ± 2.42 45.95 ± 2.61 43.71 ± 2.07 60
Ship 53.93 ± 2.63 52.73 ± 2.95 53.75 ± 2.85 > 100
Wheat 64.13 ± 2.10 66.71 ± 1.65 66.57 ± 1.37 > 100
Corn 49.52 ± 2.12 48.04 ± 2.01 46.25 ± 2.18 > 100

Table 2: Average test set precision/recall breakeven point over the top ten most frequently
occurring topics (most frequent topic first) when trained with ten labeled docu-
ments. Boldface indicates statistical significance.

SVM with a polynomial kernel of degree one7 learned on the labeled training documents).
We then tested the classifier on the independent test set.

The above procedure was repeated thirty times for each topic and the results were
averaged. We considered the Simple Margin, MaxMin Margin and Ratio Margin querying
methods as well as a Random Sample method. The Random Sample method simply ran-
domly chooses the next query point from the unlabeled pool. This last method reflects what
happens in the regular passive learning setting—the training set is a random sampling of
the data.

To measure performance we used two metrics: test set classification error and, to
stay compatible with previous Reuters corpus results, the precision/recall breakeven point
(Joachims, 1998). Precision is the percentage of documents a classifier labels as “relevant”
that are really relevant. Recall is the percentage of relevant documents that are labeled as
“relevant” by the classifier. By altering the decision threshold on the SVM we can trade pre-
cision for recall and can obtain a precision/recall curve for the test set. The precision/recall
breakeven point is a one number summary of this graph: it is the point at which precision
equals recall.

Figures 5a and 5b present the average test set accuracy and precision/recall breakeven
points over the ten topics as we vary the number of queries permitted. The horizontal line
is the performance level achieved when the SVM is trained on all 1000 labeled documents
comprising the pool. Over the Reuters corpus, the three active learning methods perform
almost identically with little notable difference to distinguish between them. Each method
also appreciably outperforms random sampling. Tables 1 and 2 show the test set accuracy
and breakeven performance of the active methods after they have asked for just eight labeled
instances (so, together with the initial two random instances, they have seen ten labeled
instances). They demonstrate that the three active methods perform similarly on this

7. For SVM and transductive SVM learning we used SVMlight Joachims (1999a).
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Figure 6: (a) Average test set accuracy over the ten most frequently occurring topics when
using a pool size of 1000. (b) Average test set precision/recall breakeven point
over the ten most frequently occurring topics when using a pool size of 1000.

Reuters data set after eight queries, with the MaxMin and Ratio showing a very slight edge in
performance. The last columns in each table are of more interest. They show approximately
how many instances would be needed if we were to use Random to achieve the same level
of performance as the Ratio active learning method. In this instance, passive learning on
average requires over six times as much data to achieve comparable levels of performance as
the active learning methods. The tables indicate that active learning provides more benefit
with the infrequent classes, particularly when measuring performance by the precision/recall
breakeven point. This last observation has also been noted before in previous empirical
tests (McCallum and Nigam, 1998).

We noticed that approximately half of the queries that the active learning methods
asked tended to turn out to be positively labeled, regardless of the true overall proportion
of positive instances in the domain. We investigated whether the gains that the active
learning methods had over regular Random sampling were due to this biased sampling. We
created a new querying method called BalancedRandom which would randomly sample an
equal number of positive and negative instances from the pool. Obviously in practice the
ability to randomly sample an equal number of positive and negative instances without
having to label an entire pool of instances first may or may not be reasonable depending
upon the domain in question. Figures 6a and 6b show the average accuracy and breakeven
point of the BalancedRandom method compared with the Ratio active method and regular
Random method on the Reuters dataset with a pool of 1000 unlabled instances. The Ratio
and Random curves are the same as those shown in Figures 5a and 5b. The MaxMin and
Simple curves are omitted to ease legibility. The BalancedRandom method has a much bet-
ter precision/recall breakeven performance than the regular Random method, although it is
still matched and then outperformed by the active method. For classification accuracy, the
BalancedRandom method initially has extremely poor performance (less than 50% which is
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(a) (b)

Figure 7: (a) Average test set accuracy over the ten most frequently occurring topics when
using a pool sizes of 500 and 1000. (b) Average breakeven point over the ten
most frequently occurring topics when using a pool sizes of 500 and 1000.

even worse than pure random guessing) and is always consistently and significantly out-
performed by the active method. This indicates that the performance gains of the active
methods are not merely due to their ability to bias the class of the instances they queries.
The active methods are choosing special targeted instances and approximately half of these
instances happen to have positive labels.

Figures 7a and 7b show the average accuracy and breakeven point of the Ratio method
with two different pool sizes. Clearly the Random sampling method’s performance will not be
affected by the pool size. However, the graphs indicate that increasing the pool of unlabeled
data will improve both the accuracy and breakeven performance of active learning. This is
quite intuitive since a good active method should be able to take advantage of a larger pool
of potential queries and ask more targeted questions.

We also investigated active learning in a transductive setting. Here we queried the
points as usual except now each method (Simple and Random) returned a transductive
SVM trained on both the labeled and remaining unlabeled data in the pool. As described
by Joachims (1998) the breakeven point for a TSVM was computed by gradually altering
the number of unlabeled instances that we wished the TSVM to label as positive. This
invovles re-learning the TSVM multiple times and was computationally intensive. Since
our setting was transduction, the performance of each classifier was measured on the pool
of data rather than a separate test set. This reflects the relevance feedback transductive
inference example presented in the introduction.

Figure 8 shows that using a TSVM provides a slight advantage over a regular SVM in
both querying methods (Random and Simple) when comparing breakeven points. However,
the graph also shows that active learning provides notably more benefit than transduction—
indeed using a TSVM with a Random querying method needs over 100 queries to achieve
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Figure 8: Average pool set precision/recall breakeven point over the ten most frequently
occurring topics when using a pool size of 1000.
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Figure 9: (a) Average test set accuracy over the five comp.∗ topics when using a pool size
of 500. (b) Average test set accuracy for comp.sys.ibm.pc.hardware with a 500
pool size.

the same breakeven performance as a regular SVM with a Simple method that has only seen
20 labeled instances.

5.2 Newsgroups Experiments

Our second data collection was K. Lang’s Newsgroups collection Lang (1995). We used the
five comp.∗ groups, discarding the Usenet headers and subject lines. We processed the text
documents exactly as before, resulting in vectors of about 10000 dimensions.
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(a) (b)

Figure 10: (a) A simple example of querying unlabeled clusters. (b) Macro-average test
set accuracy for comp.os.ms-windows.misc and comp.sys.ibm.pc.hardware where
Hybrid uses the Ratio method for the first ten queries and Simple for the rest.

We placed half of the 5000 documents aside to use as an independent test set, and
repeatedly, randomly chose a pool of 500 documents from the remaining instances. We
performed twenty runs for each of the five topics and averaged the results. We used test
set accuracy to measure performance. Figure 9a contains the learning curve (averaged
over all of the results for the five comp.∗ topics) for the three active learning methods
and Random sampling. Again, the horizontal line indicates the performance of an SVM
that has been trained on the entire pool. There is no appreciable difference between the
MaxMin and Ratio methods but, in two of the five newsgroups (comp.sys.ibm.pc.hardware
and comp.os.ms-windows.misc) the Simple active learning method performs notably worse
than the MaxMin and Ratio methods. Figure 9b shows the average learning curve for the
comp.sys.ibm.pc.hardware topic. In around ten to fifteen per cent of the runs for both of
the two newsgroups the Simple method was misled and performed extremely poorly (for
instance, achieving only 25% accuracy even with fifty training instances, which is worse
than just randomly guessing a label!). This indicates that the Simple querying method may
be more unstable than the other two methods.

One reason for this could be that the Simple method tends not to explore the feature
space as aggressively as the other active methods, and can end up ignoring entire clusters
of unlabeled instances. In Figure 10a, the Simple method takes several queries before it
even considers an instance in the unlabeled cluster while both the MaxMin and Ratio query
a point in the unlabeled cluster immediately.

While MaxMin and Ratio appear more stable they are much more computationally in-
tensive. With a large pool of s instances, they require about 2s SVMs to be learned for each
query. Most of the computational cost is incurred when the number of queries that have
already been asked is large. The reason is that the cost of training an SVM grows polynomi-
ally with the size of the labeled training set and so now training each SVM is costly (taking
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Query Simple MaxMin Ratio Hybrid

1 0.008 3.7 3.7 3.7
5 0.018 4.1 5.2 5.2
10 0.025 12.5 8.5 8.5
20 0.045 13.6 19.9 0.045
30 0.068 22.5 23.9 0.073
50 0.110 23.2 23.3 0.115
100 0.188 42.8 43.2 0.2

Table 3: Typical run times in seconds for the Active methods on the Newsgroups dataset

over 20 seconds to generate the 50th query on a Sun Ultra 60 450Mhz workstation with a
pool of 500 documents). However, when the quantity of labeled data is small, even with
a large pool size, MaxMin and Ratio are fairly fast (taking a few seconds per query) since
now training each SVM is fairly cheap. Interestingly, it is in the first ten queries that the
Simple seems to suffer the most through its lack of aggressive exploration. This motivates
a Hybrid method. We can use MaxMin or Ratio for the first few queries and then use the
Simple method for the rest. Experiments with the Hybrid method show that it maintains
the stability of the MaxMin and Ratio methods while allowing the scalability of the Simple
method. Figure 10b compares the Hybrid method with the Ratio and Simple methods on
the two newsgroups for which the Simple method performed poorly. The test set accuracy
of the Hybrid method is virtually identical to that of the Ratio method while the Hybrid
method’s run time was about the same as the Simple method, as indicated by Table 3.

6. Related Work

There have been several studies of active learning for classification. The Query by Com-
mittee algorithm (Seung et al., 1992, Freund et al., 1997) uses a prior distribution over
hypotheses. This general algorithm has been applied in domains and with classifiers for
which specifying and sampling from a prior distribution is natural. They have been used
with probabilistic models (Dagan and Engelson, 1995) and specifically with the Naive Bayes
model for text classification in a Bayesian learning setting (McCallum and Nigam, 1998).
The Naive Bayes classifier provides an interpretable model and principled ways to incorpo-
rate prior knowledge and data with missing values. However, it typically does not perform
as well as discriminative methods such as SVMs, particularly in the text classification do-
main (Joachims, 1998, Dumais et al., 1998).

We re-created McCallum and Nigam’s (1998) experimental setup on the Reuters-21578
corpus and compared the reported results from their algorithm (which we shall call the MN-
algorithm hereafter) with ours. In line with their experimental setup, queries were asked
five at a time, and this was achieved by picking the five instances closest to the current
hyperplane. Figure 11a compares McCallum and Nigam’s reported results with ours. The
graph indicates that the Active SVM performance is significantly better than that of the
MN-algorithm.

An alternative committee approach to query by committee was explored by Liere and
Tadepalli (1997, 2000). Although their algorithm (LT-algorithm hereafter) lacks the the-
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Figure 11: (a) Average breakeven point performance over the Corn, Trade and Acq Reuters-
21578 categories. (b) Average test set accuracy over the top ten Reuters-21578
categories.

oretical justifications of the Query by Committee algorithm, they successfully used their
committee based active learning method with Winnow classifiers in the text categorization
domain. Figure 11b was produced by emulating their experimental setup on the Reuters-
21578 data set and it compares their reported results with ours. Their algorithm does
not require a positive and negative instance to seed their classifier. Rather than seeding
our Active SVM with a positive and negative instance (which would give the Active SVM
an unfair advantage) the Active SVM randomly sampled 150 documents for its first 150
queries. This process virtually guaranteed that the training set contained at least one posi-
tive instance. The Active SVM then proceeded to query instances actively using the Simple
method. Despite the very naive initialization policy for the Active SVM, the graph shows
that the Active SVM accuracy is significantly better than that of the LT-algorithm.

Lewis and Gale (1994) introduced uncertainty sampling and applied it to a text domain
using logistic regression and, in a companion paper, using decision trees (Lewis and Catlett,
1994). The Simple querying method for SVM active learning is essentially the same as their
uncertainty sampling method (choose the instance that our current classifier is most uncer-
tain about), however they provided substantially less justification as to why the algorithm
should be effective. They also noted that the performance of the uncertainty sampling
method can be variable, performing quite poorly on occasions.

Two other studies (Campbell et al., 2000, Schohn and Cohn, 2000) independently de-
veloped our Simple method for active learning with support vector machines and provided
different formal analyses. Campbell, Cristianini and Smola extend their analysis for the
Simple method to cover the use of soft margin SVMs (Cortes and Vapnik, 1995) with lin-
early non-separable data. Schohn and Cohn note interesting behaviors of the active learning
curves in the presence of outliers.
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7. Conclusions and Future Work

We have introduced a new algorithm for performing active learning with SVMs. By taking
advantage of the duality between parameter space and feature space, we arrived at three
algorithms that attempt to reduce version space as much as possible at each query. We
have shown empirically that these techniques can provide considerable gains in both the
inductive and transductive settings—in some cases shrinking the need for labeled instances
by over an order of magnitude, and in almost all cases reaching the performance achievable
on the entire pool having seen only a fraction of the data. Furthermore, larger pools of
unlabeled data improve the quality of the resulting classifier.

Of the three main methods presented, the Simple method is computationally the fastest.
However, the Simple method seems to be a rougher and more unstable approximation, as
we witnessed when it performed poorly on two of the five Newsgroup topics. If asking each
query is expensive relative to computing time then using either the MaxMin or Ratio may be
preferable. However, if the cost of asking each query is relatively cheap and more emphasis
is placed upon fast feedback then the Simple method may be more suitable. In either case,
we have shown that the use of these methods for learning can substantially outperform
standard passive learning. Furthermore, experiments with the Hybrid method indicate that
it is possible to combine the benefits of the Ratio and Simple methods.

The work presented here leads us to many directions of interest. Several studies have
noted that gains in computational speed can be obtained at the expense of generalization
performance by querying multiple instances at a time (Lewis and Gale, 1994, McCallum
and Nigam, 1998). Viewing SVMs in terms of the version space gives an insight as to where
the approximations are being made, and this may provide a guide as to which multiple
instances are better to query. For instance, it is suboptimal to query two instances whose
version space hyperplanes are fairly parallel to each other. So, with the Simple method,
instead of blindly choosing to query the two instances that are the closest to the current
SVM, it may be better to query two instances that are close to the current SVM and whose
hyperplanes in the version space are fairly perpendicular. Similar tradeoffs can be made for
the Ratio and MaxMin methods.

Bayes Point Machines (Herbrich et al., 2001) approximately find the center of mass of
the version space. Using the Simple method with this point rather than the SVM point in
the version space may produce an improvement in performance and stability. The use of
Monte Carlo methods to estimate version space areas may also give improvements.

One way of viewing the strategy of always choosing to halve the version space is that we
have essentially placed a uniform distribution over the current space of consistent hypotheses
and we wish to reduce the expected size of the version space as fast as possible. Rather
than maintaining a uniform distribution over consistent hypotheses, it is plausible that
the addition of prior knowledge over our hypotheses space may allow us to modify our
query algorithm and provided us with an even better strategy. Furthermore, the PAC-
Bayesian framework introduced by McAllester (1999) considers the effect of prior knowledge
on generalization bounds and this approach may lead to theoretical guarantees for the
modified querying algorithms.

Finally, the Ratio and MaxMin methods are computationally expensive since they have
to step through each of the unlabeled data instances and learn an SVM for each possible
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labeling. However, the temporarily modified data sets will only differ by one instance from
the original labeled data set and so one can envisage learning an SVM on the original data
set and then computing the “incremental” updates to obtain the new SVMs (Cauwenberghs
and Poggio, 2001) for each of the possible labelings of each of the unlabeled instances. Thus,
one would hopefully obtain a much more efficient implementation of the Ratio and MaxMin
methods and hence allow these active learning algorithms to scale up to larger problems.
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